2022屆云南省玉溪市峨山彝族自治縣高三3月份模擬考試數(shù)學(xué)試題含解析_第1頁
2022屆云南省玉溪市峨山彝族自治縣高三3月份模擬考試數(shù)學(xué)試題含解析_第2頁
2022屆云南省玉溪市峨山彝族自治縣高三3月份模擬考試數(shù)學(xué)試題含解析_第3頁
2022屆云南省玉溪市峨山彝族自治縣高三3月份模擬考試數(shù)學(xué)試題含解析_第4頁
2022屆云南省玉溪市峨山彝族自治縣高三3月份模擬考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知集合Mx|1x2,Nx|x(x+3)0,則MN( )A3,2)B(3,2)C(1,0D(1,0)2已知奇函數(shù)是上的減函數(shù),若滿足不等式組,則的最小值為( )A-4B-2C0D43

2、復(fù)數(shù)滿足,則( )ABCD4山東煙臺蘋果因“果形端正、色澤艷麗、果肉甜脆、香氣濃郁”享譽(yù)國內(nèi)外.據(jù)統(tǒng)計,煙臺蘋果(把蘋果近似看成球體)的直徑(單位:)服從正態(tài)分布,則直徑在內(nèi)的概率為( )附:若,則,.A0.6826B0.8413C0.8185D0.95445若不等式對于一切恒成立,則的最小值是 ( )A0BCD6已知函數(shù),其圖象關(guān)于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點( )A先向左平移個單位長度,再把所得各點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變B先向右平移個單位長度,再把所得各點橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變C先向右平移個單位長度,再把所得各點橫坐標(biāo)伸長為原來的2倍

3、,縱坐標(biāo)保持不變D先向左平移個單位長度,再把所得各點橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變7已知數(shù)列的前項和為,且,則的通項公式( )ABCD8已知雙曲線的右焦點為F,過右頂點A且與x軸垂直的直線交雙曲線的一條漸近線于M點,MF的中點恰好在雙曲線C上,則C的離心率為( )ABCD9已知函數(shù)在區(qū)間有三個零點,且,若,則的最小正周期為( )ABCD10中國古典樂器一般按“八音”分類這是我國最早按樂器的制造材料來對樂器進(jìn)行分類的方法,最先見于周禮春官大師,分為“金、石、土、革、絲、木、匏(po)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器現(xiàn)從“八音”中任取不同

4、的“兩音”,則含有打擊樂器的概率為( )ABCD11已知向量,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A關(guān)于直線對稱B關(guān)于點對稱C周期為D在上是增函數(shù)12若,則( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知函數(shù),在區(qū)間上隨機(jī)取一個數(shù),則使得0的概率為 14九章算術(shù)中記載了“今有共買豕,人出一百,盈一百;人出九十,適足。問人數(shù)、豕價各幾何?”.其意思是“若干個人合買一頭豬,若每人出100,則會剩下100;若每人出90,則不多也不少。問人數(shù)、豬價各多少?”.設(shè)分別為人數(shù)、豬價,則_,_.15若的展開式中各項系數(shù)之和為32,則展開式中x的系數(shù)為_16在平面直角坐標(biāo)系中,已知

5、圓,圓直線與圓相切,且與圓相交于,兩點,則弦的長為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).()當(dāng)時,求函數(shù)在上的值域;()若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍.18(12分)在,這三個條件中任選一個,補(bǔ)充在下面問題中,并解答.已知等差數(shù)列的公差為,等差數(shù)列的公差為.設(shè)分別是數(shù)列的前項和,且, ,(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.19(12分)有甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪元,送餐員每單制成元;乙公司無底薪,單以內(nèi)(含單)的部分送餐員每單抽成元,超過單的部分送餐員每單抽成元.現(xiàn)從這兩家公司各隨機(jī)選取一名送

6、餐員,分別記錄其天的送餐單數(shù),得到如下頻數(shù)分布表:送餐單數(shù)3839404142甲公司天數(shù)101015105乙公司天數(shù)101510105(1)從記錄甲公司的天送餐單數(shù)中隨機(jī)抽取天,求這天的送餐單數(shù)都不小于單的概率;(2)假設(shè)同一公司的送餐員一天的送餐單數(shù)相同,將頻率視為概率,回答下列兩個問題:求乙公司送餐員日工資的分布列和數(shù)學(xué)期望;小張打算到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,小張應(yīng)選擇哪家公司應(yīng)聘?說明你的理由.20(12分)設(shè)函數(shù)其中()若曲線在點處切線的傾斜角為,求的值;()已知導(dǎo)函數(shù)在區(qū)間上存在零點,證明:當(dāng)時,.21(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,

7、在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠(yuǎn)銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴(yán)把質(zhì)量關(guān),合作社對村民制作的每件手工藝品都請3位行家進(jìn)行質(zhì)量把關(guān),質(zhì)量把關(guān)程序如下:(i)若一件手工藝品3位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為A 級;(ii)若僅有1位行家認(rèn)為質(zhì)量不過關(guān),再由另外2位行家進(jìn)行第二次質(zhì)量把關(guān),若第二次質(zhì)量把關(guān)這2位行家都認(rèn)為質(zhì)量過關(guān),則該手工藝品質(zhì)量為B 級,若第二次質(zhì)量把關(guān)這2位行家中有1位或2位認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為C 級;(iii)若有2位或3位行家

8、認(rèn)為質(zhì)量不過關(guān),則該手工藝品質(zhì)量為D 級.已知每一次質(zhì)量把關(guān)中一件手工藝品被1位行家認(rèn)為質(zhì)量不過關(guān)的概率為,且各手工藝品質(zhì)量是否過關(guān)相互獨立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.求10件手工藝品中不能外銷的手工藝品最有可能是多少件;記1件手工藝品的利潤為X元,求X的分布列與期望.22(10分)改革開放年,我國經(jīng)濟(jì)取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強(qiáng).為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進(jìn)行一次全市駕駛員交通安全

9、意識調(diào)查.隨機(jī)抽取男女駕駛員各人,進(jìn)行問卷測評,所得分?jǐn)?shù)的頻率分布直方圖如圖所示在分以上為交通安全意識強(qiáng).求的值,并估計該城市駕駛員交通安全意識強(qiáng)的概率;已知交通安全意識強(qiáng)的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識與性別有關(guān);安全意識強(qiáng)安全意識不強(qiáng)合計男性女性合計用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機(jī)選取人對未來一年內(nèi)的交通違章情況進(jìn)行跟蹤調(diào)查,求至少有人得分低于分的概率.附:其中參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1C【解析】先化簡Nx|x(x+3)0=x|-3x0,再根據(jù)

10、Mx|1x2,求兩集合的交集.【詳解】因為Nx|x(x+3)0=x|-3x0,又因為Mx|1x2,所以MNx|1x0.故選:C【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.2B【解析】根據(jù)函數(shù)的奇偶性和單調(diào)性得到可行域,畫出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】奇函數(shù)是上的減函數(shù),則,且,畫出可行域和目標(biāo)函數(shù),即,表示直線與軸截距的相反數(shù),根據(jù)平移得到:當(dāng)直線過點,即時,有最小值為.故選:.【點睛】本題考查了函數(shù)的單調(diào)性和奇偶性,線性規(guī)劃問題,意在考查學(xué)生的綜合應(yīng)用能力,畫出圖像是解題的關(guān)鍵.3C【解析】利用復(fù)數(shù)模與除法運算即可得到結(jié)果.【詳解

11、】解: ,故選:C【點睛】本題考查復(fù)數(shù)除法運算,考查復(fù)數(shù)的模,考查計算能力,屬于基礎(chǔ)題.4C【解析】根據(jù)服從的正態(tài)分布可得,將所求概率轉(zhuǎn)化為,結(jié)合正態(tài)分布曲線的性質(zhì)可求得結(jié)果.【詳解】由題意,則,所以,.故果實直徑在內(nèi)的概率為0.8185.故選:C【點睛】本題考查根據(jù)正態(tài)分布求解待定區(qū)間的概率問題,考查了正態(tài)曲線的對稱性,屬于基礎(chǔ)題.5C【解析】試題分析:將參數(shù)a與變量x分離,將不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,即可得到結(jié)論解:不等式x2+ax+10對一切x(0,成立,等價于a-x-對于一切成立,y=-x-在區(qū)間上是增函數(shù)a-a的最小值為-故答案為C考點:不等式的應(yīng)用點評:本題綜合考查了不

12、等式的應(yīng)用、不等式的解法等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題6D【解析】由函數(shù)的圖象關(guān)于直線對稱,得,進(jìn)而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關(guān)于直線對稱,得,即,解得,所以,故只需將函數(shù)的圖象上的所有點“先向左平移個單位長度,得再將橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變,得”即可.故選:D【點睛】本題考查三角函數(shù)的圖象與性質(zhì),考查圖像變換,考查運算求解能力,是中檔題7C【解析】利用證得數(shù)列為常數(shù)列,并由此求得的通項公式.【詳解】由,得,可得().相減得,則(),又由,得,所以,所以為常數(shù)列,所以,故.故選:C【點睛】本小題考查數(shù)列的通項與前項和的關(guān)系等基礎(chǔ)知識;考

13、查運算求解能力,邏輯推理能力,應(yīng)用意識.8A【解析】設(shè),則MF的中點坐標(biāo)為,代入雙曲線的方程可得的關(guān)系,再轉(zhuǎn)化成關(guān)于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點為,右焦點為, M所在直線為,不妨設(shè),MF的中點坐標(biāo)為.代入方程可得,(負(fù)值舍去).故選:A.【點睛】本題考查雙曲線的離心率,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意構(gòu)造的齊次方程.9C【解析】根據(jù)題意,知當(dāng)時,由對稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個零點,當(dāng)時,由對稱軸可知,滿足,即.同理,滿足,即,所以最小正周期為:.故選:C.【點睛】本題考

14、查正弦型函數(shù)的最小正周期,涉及函數(shù)的對稱性的應(yīng)用,考查計算能力.10B【解析】分別求得所有基本事件個數(shù)和滿足題意的基本事件個數(shù),根據(jù)古典概型概率公式可求得結(jié)果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關(guān)鍵是能夠利用組合的知識求得基本事件總數(shù)和滿足題意的基本事件個數(shù).11D【解析】當(dāng)時,f(x)不關(guān)于直線對稱;當(dāng)時, ,f(x)關(guān)于點對稱;f(x)得周期,當(dāng)時, ,f(x)在上是增函數(shù)本題選擇D選項.12D【解析】直接利用二倍角余弦公式與弦化切即可得到結(jié)果【詳解】,故選D【點睛】本題考查的

15、知識要點:三角函數(shù)關(guān)系式的恒等變變換,同角三角函數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型二、填空題:本題共4小題,每小題5分,共20分。13【解析】試題分析:可以得出,所以在區(qū)間上使的范圍為,所以使得0的概率為考點:本小題主要考查與長度有關(guān)的幾何概型的概率計算.點評:幾何概型適用于解決一切均勻分布的問題,包括“長度”、“角度”、“面積”、“體積”等,但要注意求概率時做比的上下“測度”要一致.1410 900 【解析】由題意列出方程組,求解即可.【詳解】由題意可得,解得.故答案為10 900【點睛】本題主要考查二元一次方程組的解法,用消元法來求解即可,屬于基礎(chǔ)題型.1520

16、25【解析】利用賦值法,結(jié)合展開式中各項系數(shù)之和列方程,由此求得的值.再利用二項式展開式的通項公式,求得展開式中的系數(shù).【詳解】依題意,令,解得,所以,則二項式的展開式的通項為:令,得,所以的系數(shù)為.故答案為:2025【點睛】本小題主要考查二項式展開式各項系數(shù)之和,考查二項式展開式指定項系數(shù)的求法,屬于基礎(chǔ)題.16【解析】利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【詳解】解:直線與圓相切,圓心為由,得或,當(dāng)時,到直線的距離,不成立,當(dāng)時,與圓相交于,兩點,到直線的距離,故答案為【點睛】考查直線與圓的位置關(guān)系,相切和相交問題,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程

17、或演算步驟。17()()【解析】()把代入,可得,令,求出其在上的值域,利用對數(shù)函數(shù)的單調(diào)性即可求解.()根據(jù)對數(shù)函數(shù)的單調(diào)性可得在上單調(diào)遞增,再利用二次函數(shù)的圖像與性質(zhì)可得解不等式組即可求解.【詳解】()當(dāng)時,此時函數(shù)的定義域為.因為函數(shù)的最小值為.最大值為,故函數(shù)在上的值域為;()因為函數(shù)在上單調(diào)遞減,故在上單調(diào)遞增,則解得,綜上所述,實數(shù)的取值范圍.【點睛】本題主要考查了利用對數(shù)函數(shù)的單調(diào)性求值域、利用對數(shù)型函數(shù)的單調(diào)區(qū)間求參數(shù)的取值范圍以及二次函數(shù)的圖像與性質(zhì),屬于中檔題.18(1);(2)【解析】方案一:(1)根據(jù)等差數(shù)列的通項公式及前n項和公式列方程組,求出和,從而寫出數(shù)列的通項公

18、式;(2)由第(1)題的結(jié)論,寫出數(shù)列的通項,采用分組求和、等比求和公式以及裂項相消法,求出數(shù)列的前項和.其余兩個方案與方案一的解法相近似.【詳解】解:方案一:(1)數(shù)列都是等差數(shù)列,且,解得,綜上(2)由(1)得:方案二:(1)數(shù)列都是等差數(shù)列,且,解得,.綜上,(2)同方案一方案三:(1)數(shù)列都是等差數(shù)列,且.,解得,.綜上,(2)同方案一【點睛】本題考查了等差數(shù)列的通項公式、前n項和公式的應(yīng)用,考查了分組求和、等比求和及裂項相消法求數(shù)列的前n項和,屬于中檔題.19(1);(2)分布列見解析,;小張應(yīng)選擇甲公司應(yīng)聘.【解析】(1)記抽取的3天送餐單數(shù)都不小于40為事件,可得(A)的值(2)

19、設(shè)乙公司送餐員送餐單數(shù)為,可得當(dāng)時,以此類推可得:當(dāng)時,當(dāng)時,的值當(dāng)時,的值,同理可得:當(dāng)時,的所有可能取值可得的分布列及其數(shù)學(xué)期望依題意,甲公司送餐員日平均送餐單數(shù)可得甲公司送餐員日平均工資,與乙數(shù)學(xué)期望比較即可得出【詳解】解:(1)由表知,50天送餐單數(shù)中有30天的送餐單數(shù)不小于40單,記抽取的3天送餐單數(shù)都不小于40為事件,則 (2)設(shè)乙公司送餐員的送餐單數(shù)為,日工資為元,則當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,所以的分布列為228234240247254 依題意,甲公司送餐員的日平均送餐單數(shù)為,所以甲公司送餐員的日平均工資為元, 因為,所以小張應(yīng)選擇甲公司應(yīng)聘【點睛】本題考查了隨機(jī)變量的分布列與數(shù)學(xué)期望、古典概率計算公式、組合計算公式,考查了推理能力與計算能力,屬于中檔題20 ();()證明見解析【解析】()求導(dǎo)得到,解得答案.() ,故,在上單調(diào)遞減,在上單調(diào)遞增,設(shè),證明函數(shù)單調(diào)遞減,故,得到證明.【詳解】(),故,故.() ,即,存在唯一零點,設(shè)零點為,故,即,在上單調(diào)遞減,在上單調(diào)遞增,故,設(shè),則,設(shè),則,單調(diào)遞減,故恒成立,故單調(diào)遞減.,故當(dāng)時,.【點睛】本題考查了

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論