2023屆山東省濟寧市兗州區數學九年級第一學期期末聯考試題含解析_第1頁
2023屆山東省濟寧市兗州區數學九年級第一學期期末聯考試題含解析_第2頁
2023屆山東省濟寧市兗州區數學九年級第一學期期末聯考試題含解析_第3頁
2023屆山東省濟寧市兗州區數學九年級第一學期期末聯考試題含解析_第4頁
2023屆山東省濟寧市兗州區數學九年級第一學期期末聯考試題含解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.將拋物線向上平移兩個單位長度,得到的拋物線解析式是()A. B.C. D.2.已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現有以下四個結論:①該拋物線的對稱軸在y軸左側;②關于x的方程ax2+bx+c+2=0無實數根;③a﹣b+c≥0;④的最小值為1.其中,正確結論的個數為()A.1個 B.2個 C.1個 D.4個3.兩地相距,甲、乙兩人從兩地出發相向而行,甲先出發.圖中表示兩人離地的距離與時間的關系,結合圖象,下列結論錯誤的是()A.是表示甲離地的距離與時間關系的圖象B.乙的速度是C.兩人相遇時間在D.當甲到達終點時乙距離終點還有4.小思去延慶世界園藝博覽會游覽,如果從永寧瞻勝、萬芳華臺、絲路花雨、九州花境四個景點中隨機選擇一個進行參觀,那么他選擇的景點恰為絲路花雨的概率為()A. B. C. D.5.函數的圖象如圖所示,那么函數的圖象大致是()A. B. C. D.6.下列是隨機事件的是()A.口袋里共有5個球,都是紅球,從口袋里摸出1個球是黃球B.平行于同一條直線的兩條直線平行C.擲一枚圖釘,落地后圖釘針尖朝上D.擲一枚質地均勻的骰子,擲出的點數是77.下圖中幾何體的左視圖是()A. B. C. D.8.把函數的圖像繞原點旋轉得到新函數的圖像,則新函數的表達式是()A. B.C. D.9.觀察下列等式:①②③④…請根據上述規律判斷下列等式正確的是()A. B.C. D.10.如圖,△ABC中∠A=60°,AB=4,AC=6,將△ABC沿圖示中的虛線剪開,剪下的三角形與△ABC不相似的是()A. B.C. D.11.將拋物線y=x2平移得到拋物線y=(x+2)2,則這個平移過程正確的是()A.向左平移2個單位B.向右平移2個單位C.向上平移2個單位D.向下平移2個單位12.如圖,菱形在第一象限內,,反比例函數的圖象經過點,交邊于點,若的面積為,則的值為()A. B. C. D.4二、填空題(每題4分,共24分)13.若m+n=3,則2m2+4mn+2n2-6的值為________.14.如圖,點E、F、G、H分別是任意四邊形ABCD中AD、BD、BC、CA的中點,當四邊形ABCD的邊至少滿足條件時,四邊形EFGH是矩形.15.一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發,勻速行駛.設行駛的時間為x(時),兩車之間的距離為y(千米),圖中的折線表示從兩車出發至快車到達乙地過程中y與x之間的函數關系.已知兩車相遇時快車比慢車多行駛60千米.若快車從甲地到達乙地所需時間為t時,則此時慢車與甲地相距_____千米.16.已知點A(﹣2,m)、B(2,n)都在拋物線y=x2+2x﹣t上,則m與n的大小關系是m_____n.(填“>”、“<”或“=”)17.如圖,四邊形ABCD是矩形,,,以點A為圓心,AB長為半徑畫弧,交CD于點E,交AD的延長線于點F,則圖中陰影部分的面積是________.18.二次函數y=x2的圖象如圖所示,點A0位于坐標原點,點A1、A、A、…、A在y軸的正半軸上,點B、B、B、…、B在二次函數y=x2位于第一象限的圖象上,若△A0B1A1、△A1B2A2、△A2B3A3、…、△A2017B2018A2018都為等邊三角形,則△ABA的邊長=____________.三、解答題(共78分)19.(8分)富平因取“富庶太平”之意而得名,是華夏文明重要發祥地之一.某班舉行關于“美麗的富平”的演講活動.小明和小麗都想第一個演講,于是他們通過做游戲來決定誰第一個來演.講游戲規則是:在一個不透明的袋子中有一個黑球a和兩個白球b、c,(除顏色外其它均相同),小麗從袋子中摸出一個球,放回后攪勻,小明再從袋子中摸出一個球,若兩次摸到的球顏色相同,則小麗獲勝,否則小明獲勝,請你用樹狀圖或列表的方法分別求出小麗與小明獲勝的概率,并說明這個游戲規則對雙方公平嗎?20.(8分)某校的學生除了體育課要進行體育鍛煉外,寒暑假期間還要自己抽時間進行體育鍛煉,為了了解同學們假期體育鍛煉的情況,開學時體育老師隨機抽取了部分同學進行調查,按鍛煉的時間x(分鐘)分為以下四類:A類(),B類(),C類(),D類(),對調查結果進行整理并繪制了如圖所示的不完整的折線統計圖和扇形統計圖,請結合圖中的信息解答下列各題:(1)扇形統計圖中D類所對應的圓心角度數為,并補全折線統計圖;(2)現從A類中選出兩名男同學和三名女同學,從以上五名同學中隨機抽取兩名同學進行采訪,請利用畫樹狀圖或列表的方法求出抽到的學生恰好是一男一女的概率.21.(8分)(1)問題發現:如圖1,在Rt△ABC中,AB=AC,D為BC邊上一點(不與點B、C重合)將線段AD繞點A逆時針旋轉90°得到AE,連接EC,則線段BD與CE的數量關系是,位置關系是;(2)探究證明:如圖2,在Rt△ABC與Rt△ADE中,AB=AC,AD=AE,將△ADE繞點A旋轉,使點D落在BC的延長線上時,連接EC,寫出此時線段AD,BD,CD之間的等量關系,并證明;(3)拓展延仲:如圖3,在四邊形ABCF中,∠ABC=∠ACB=∠AFC=45°.若BF=13,CF=5,請直接寫出AF的長.22.(10分)交通工程學理論把在單向道路上行駛的汽車看成連續的流體,并用流量、速度、密度三個概念描述車流的基本特征,其中流量(輛小時)指單位時間內通過道路指定斷面的車輛數;速度(千米小時)指通過道路指定斷面的車輛速度,密度(輛千米)指通過道路指定斷面單位長度內的車輛數.為配合大數據治堵行動,測得某路段流量與速度之間關系的部分數據如下表:速度v(千米/小時)流量q(輛/小時)(1)根據上表信息,下列三個函數關系式中,刻畫,關系最準確是_____________________.(只填上正確答案的序號)①;②;③(2)請利用(1)中選取的函數關系式分析,當該路段的車流速度為多少時,流量達到最大?最大流量是多少?(3)已知,,滿足,請結合(1)中選取的函數關系式繼續解決下列問題:市交通運行監控平臺顯示,當時道路出現輕度擁堵.試分析當車流密度在什么范圍時,該路段將出現輕度擁堵?23.(10分)小明同學解一元二次方程x2﹣6x﹣1=0的過程如圖所示.解:x2﹣6x=1…①x2﹣6x+9=1…②(x﹣3)2=1…③x﹣3=±1…④x1=4,x2=2…⑤(1)小明解方程的方法是.(A)直接開平方法(B)因式分解法(C)配方法(D)公式法他的求解過程從第步開始出現錯誤.(2)解這個方程.24.(10分)如圖,拋物線與x軸交于A、B兩點(點A在點B左側),與y軸交于點C,且當x=﹣1和x=3時,y值相等.直線y=與拋物線有兩個交點,其中一個交點的橫坐標是6,另一個交點是這條拋物線的頂點M.(1)求這條拋物線的表達式.(2)動點P從原點O出發,在線段OB上以每秒1個單位長度的速度向點B運動,同時點Q從點B出發,在線段BC上以每秒2個單位長度的速度向點C運動,當一個點到達終點時,另一個點立即停止運動,設運動時間為t秒.①求t的取值范圍.②若使△BPQ為直角三角形,請求出符合條件的t值;③t為何值時,四邊形ACQP的面積有最小值,最小值是多少?直接寫出答案.25.(12分)在平面直角坐標系中(如圖),已知拋物線經過點,與軸交于點,,拋物線的頂點為點,對稱軸與軸交于點.(1)求拋物線的表達式及點的坐標;(2)點是軸正半軸上的一點,如果,求點的坐標;(3)在(2)的條件下,點是位于軸左側拋物線上的一點,如果是以為直角邊的直角三角形,求點的坐標.26.山西是我國釀酒最早的地區之一,山西釀酒業迄今為止已有余年的歷史.在漫長的歷史進程中,山西人民釀造出品種繁多、馳名中外的美酒佳釀,其中以汾酒、竹葉青酒最為有名.某煙酒超市賣有竹葉青酒,每瓶成本價是元,經調查發現,當售價為元時,每天可以售出瓶,售價每降低元,可多售出瓶(售價不高于元)(1)售價為多少時可以使每天的利潤最大?最大利潤是多少?(2)要使每天的利潤不低于元,每瓶竹葉青酒的售價應該控制在什么范圍內?

參考答案一、選擇題(每題4分,共48分)1、D【分析】按“左加右減括號內,上加下減括號外”的規律平移即可得出所求函數的解析式.【詳解】由題意得=.故選D.【點睛】本題考查了二次函數圖象的平移,其規律是:將二次函數解析式轉化成頂點式y=a(x-h)2+k

(a,b,c為常數,a≠0),確定其頂點坐標(h,k),在原有函數的基礎上“h值正右移,負左移;k值正上移,負下移”.2、D【解析】本題考察二次函數的基本性質,一元二次方程根的判別式等知識點.【詳解】解:∵,∴拋物線的對稱軸<0,∴該拋物線的對稱軸在軸左側,故①正確;∵拋物線與軸最多有一個交點,∴∴關于的方程中∴關于的方程無實數根,故②正確;∵拋物線與軸最多有一個交點,∴當時,≥0正確,故③正確;當時,,故④正確.故選D.【點睛】本題的解題關鍵是熟悉函數的系數之間的關系,二次函數和一元二次方程的關系,難點是第四問的證明,要考慮到不等式的轉化.3、C【分析】根據圖像獲取所需信息,再結合行程問題量間的關系進行解答即可.【詳解】解:A.是表示甲離地的距離與時間關系的圖象是正確的;B.乙用時3小時,乙的速度,90÷3=,故選項B正確;C.設甲對應的函數解析式為y=ax+b,則有:解得:∴甲對應的函數解析式為y=-45x+90,設乙對應的函數解析式為y=cx+d,則有:解得:即乙對應的函數解析式為y=30x-15則有:解得:x=1.4h,故C選項錯誤;D.當甲到達終點時乙距離終點還有90-40×1.4=45km,故選項D正確;故答案為C.【點睛】本題考查一次函數的應用,解答本題的關鍵是明確題意、從圖像中獲取問題需要的條件以及數形結合的思想的應用是解答本題的關鍵.4、B【分析】根據概率公式直接解答即可.【詳解】∵共有四個景點,分別是永寧瞻勝、萬芳華臺、絲路花雨、九州花境,∴他選擇的景點恰為絲路花雨的概率為;故選:B.【點睛】本題考查了概率的知識.用到的知識點為:概率=所求情況數與總情況數之比.5、D【解析】首先由反比例函數的圖象位于第二、四象限,得出k<0,則-k>0,所以一次函數圖象經過第二四象限且與y軸正半軸相交.【詳解】解:反比例函數的圖象在第二、四象限,函數的圖象應經過第一、二、四象限.故選D.【點睛】本題考查的知識點:

(1)反比例函數的圖象是雙曲線,當k<0時,它的兩個分支分別位于第二、四象限.

(2)一次函數y=kx+b的圖象當k<0,b>0時,函數y=kx+b的圖象經過第一、二、四象限.6、C【分析】根據必然事件、不可能事件、隨機事件的概念可區別各類事件.【詳解】A.口袋里共有5個球,都是紅球,從口袋里摸出1個球是黃球,是不可能事件,故不符合題意;B.平行于同一條直線的兩條直線平行,是必然事件,故不符合題意;C.擲一枚圖釘,落地后圖釘針尖朝上,是隨機事件,故符合題意;D.擲一枚質地均勻的骰子,擲出的點數是7,是不可能事件,故不符合題意,故選C.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件.不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.7、D【分析】根據左視圖是從左面看到的圖形,即可.【詳解】從左面看從左往右的正方形個數分別為1,2,故選D.【點睛】本題主要考查幾何體的三視圖,理解左視圖是從左面看到的圖形,是解題的關鍵.8、D【分析】二次函數繞原點旋轉,旋轉后的拋物線頂點與原拋物線頂點關于原點中心對稱,開口方向相反,將原解析式化為頂點式即可解答.【詳解】把函數的圖像繞原點旋轉得到新函數的圖像,則新函數的表達式:故選:D【點睛】本題考查的是二次函數的旋轉,關鍵是掌握旋轉的規律,二次函數的旋轉,平移等一般都要先化為頂點式.9、C【分析】根據題目中各個式子的變化規律,可以判斷各個選項中的等式是否成立,從而可以解答本題.【詳解】解:由題意可得,,選項A錯誤;,選項B錯誤;,選項C正確;,選項D錯誤.故選:C.【點睛】本題考查的知識點是探尋數式的規律,從題目中找出式子的變化規律是解此題的關鍵.10、A【分析】根據相似三角形的判定定理對各選項進行逐一判定即可.【詳解】A、兩三角形的對應邊不成比例,故兩三角形不相似,故本選項符合題意,B、兩三角形對應邊成比例且夾角相等,故兩三角形相似,故本選項不符合題意,C、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項不符合題意,D、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項不符合題意,故選:A.【點睛】本題考查的是相似三角形的判定,如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似;如果兩個三角形的兩組對應邊的比相等,并且對應的夾角相等,那么這兩個三角形相似;如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;熟知相似三角形的判定定理是解答此題的關鍵.11、A【解析】試題分析:根據拋物線的平移規律即可得答案,故答案選A.考點:拋物線的平移規律.12、C【分析】過A作AE⊥x軸于E,設OE=,則AE=,OA=,即菱形邊長為,再根據△AOD的面積等于菱形面積的一半建立方程可求出,利用點A的橫縱坐標之積等于k即可求解.【詳解】如圖,過A作AE⊥x軸于E,設OE=,在Rt△AOE中,∠AOE=60°∴AE=,OA=∴A,菱形邊長為由圖可知S菱形AOCB=2S△AOD∴,即∴∴故選C.【點睛】本題考查了反比例函數與幾何綜合問題,利用特殊角度的三角函數值表示出菱形邊長及A點坐標是解決本題的關鍵.二、填空題(每題4分,共24分)13、1【解析】原式=2(m2+2mn+n2)-6,=2(m+n)2-6,=2×9-6,=1.14、AB⊥CD【解析】解:需添加條件AB⊥DC,∵、、、分別為四邊形中、、、中點,∴,∴,.∴四邊形為平行四邊形.∵E、H是AD、AC中點,

∴EH∥CD,

∵AB⊥DC,EF∥HG

∴EF⊥EH,

∴四邊形EFGH是矩形.

故答案為:AB⊥DC.15、【分析】求出相遇前y與x的關系式,確定出甲乙兩地的距離,進而求出兩車的速度,即可求解.【詳解】設AB所在直線的解析式為:y=kx+b,把(1.5,70)與(2,0)代入得:,解得:,∴AB所在直線的解析式為:y=-140x+280,令x=0,得到y=280,即甲乙兩地相距280千米,設兩車相遇時,乙行駛了x千米,則甲行駛了(x+60)千米,根據題意得:x+x+60=280,解得:x=110,即兩車相遇時,乙行駛了110千米,甲行駛了170千米,∴甲車的速度為85千米/時,乙車速度為55千米/時,根據題意得:280﹣55×(280÷85)=(千米).則快車到達乙地時,慢車與甲地相距千米.故答案為:【點睛】本題主要考查根據函數圖象的信息解決行程問題,根據函數的圖象,求出AB所在直線的解析式是解題的關鍵.16、<【解析】根據二次函數的性質得到拋物線y=x2+2x-t的開口向上,有最小值為-t-1,對稱軸為直線x=-1,則在對稱軸左側,y隨x的增大而減小,在對稱軸右側,y隨x的增大而增大,進而解答即可.【詳解】∵y=x2+2x-t=(x+1)2-t-1,∴a=1>0,有最小值為-t-1,∴拋物線開口向上,∵拋物線y=x2+2x-t對稱軸為直線x=-1,∵-2<0<2,∴m<n.故答案為:<17、.【分析】根據題意可以求得和的度數,然后根據圖形可知陰影部分的面積就是矩形的面積與矩形中間空白部分的面積之差再加上扇形EAF與的面積之差的和,本題得以解決.【詳解】解:連接AE,∵,,,∴,∴,∴,,∴,∴陰影部分的面積是:,故答案為.【點睛】本題考查扇形面積的計算、矩形的性質,解答本題的關鍵是明確題意,利用數形結合的思想解答.18、1【分析】分別過B1,B2,B3作y軸的垂線,垂足分別為A、B、C,設A0A1=a,A1A2=b,A2A3=c,則AB1=a,BB2=b,CB3=c,再根據所求正三角形的邊長,分別表示B1,B2,B3的縱坐標,逐步代入拋物線y=x2中,求a、b、c的值,得出規律.【詳解】解:分別過B1,B2,B3作y軸的垂線,垂足分別為A、B、C,

設A0A1=a,A1A2=b,A2A3=c,則AB1=a,BB2=b,CB3=c,在正△A0B1A1中,B1(a,),

代入y=x2中,得=×a2,解得a=1,即A0A1=1,

在正△A1B2A2中,B2(b,1+),

代入y=x2中,得1+=×b2,解得b=2,即A1A2=2,

在正△A2B3A3中,B3(c,3+),

代入y=x2中,得3+=×c2,解得c=3,即A2A3=3,

依此類推由此可得△A2017B1A1的邊長=1,

故答案為:1.【點睛】本題考查了二次函數的綜合運用.關鍵是根據正三角形的性質表示點的坐標,利用拋物線解析式求正三角形的邊長,得到規律.三、解答題(共78分)19、小麗為,小軍為,這個游戲不公平,見解析【分析】畫出樹狀圖,得出總情況數及兩次模到的球顏色相同和不同的情況數,即可得小麗與小明獲勝的概率,根據概率即可得游戲是否公平.【詳解】根據題意兩圖如下:共有種等情況數,其中兩次模到的球顏色相同的情況數有種,不同的有種,小麗獲勝的概率是小軍獲勝的概率是,所以這個游戲不公平.【點睛】本題考查游戲公平性的判斷,判斷游戲的公平性要計算每個參與者獲勝的概率,概率相等則游戲公平,否則游戲不公平,用到的知識點為:概率=所求情況數與總情況數之比.20、(1);(2)畫圖見解析,.【分析】(1)先由A類型的人數及其所占百分比求出總人數,再用360乘以D類型人數占被調查人數的比例可得其對應圓心角度數,利用各類型人數之和等于總人數求出B類型人數,從而補全折線圖;(2)用A表示女生,B表示男生,畫樹狀圖得出所有等可能結果,從中找到符合條件的結果數,再利用概率公式求解可得.【詳解】(1)∵被調查的總人數為48÷40%=120(人),∴扇形統計圖中D類所對應的圓心角度數為360×=,B類型人數為120?(48+24+6)=42(人),補全折線統計圖如下:故答案為:;(2)用A表示女生,B表示男生,畫樹狀圖共有20種情況,其中一男一女有12種情況,故抽到學生恰好是一男一女的概率【點睛】本題考查列表法與樹狀圖法、折線統計圖、扇形統計圖,解題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答問題.21、(1)BD=CE,BD⊥CE;(2)2AD2=BD2+CD2,理由詳見解析;(3).【分析】(1)證明△BAD≌△CAE,根據全等三角形的性質解答;(2)證明△BAD≌△CAE,得到BD=CE,根據勾股定理計算即可;(3)如圖3,作輔助線,構建全等三角形,證明△BAF≌△CAG,得到CG=BF=13,證明是直角三角形,根據勾股定理計算即可.【詳解】解:(1)在Rt△ABC中,AB=AC,∴∠B=∠ACB=90°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,∵,∴△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∵∠ACB=45°,∴,故答案為BD=CE,BD⊥CE;(2)2AD2=BD2+CD2,理由是:如圖2,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∵AD=AE,∠DAE=90°,∴,∴2AD2=BD2+CD2;(3)如圖3,將AF繞點A逆時針旋轉90°至AG,連接CG、FG,則△FAG是等腰直角三角形,∴∠AFG=45°,∵∠AFC=45°,∴∠GFC=90°,同理得:△BAF≌△CAG,∴CG=BF=13,Rt△CGF中,∵CF=5,∴FG=12,∵△FAG是等腰直角三角形,∴.【點睛】本題主要考查了全等三角形的判定與性質,勾股定理,以及旋轉變換的性質,掌握全等三角形的判定定理和性質定理是解題關鍵.22、(1)答案為③;(2)v=30時,q達到最大值,q的最大值為1;(3)84<k≤2【分析】(1)根據一次函數,反比例函數和二次函數的性質,結合表格數據,即可得到答案;(2)把二次函數進行配方,即可得到答案;(3)把v=12,v=18,分別代入二次函數解析式,求出q的值,進而求出對應的k值,即可得到答案.【詳解】(1)∵,q隨v的增大而增大,∴①不符合表格數據,∵,q隨v的增大而減小,∴②不符合表格數據,∵,當q≤30時,q隨v的增大而增大,q≥30時,q隨v的增大而減小,∴③基本符合表格數據,故答案為:③;(2)∵q=﹣2v2+120v=﹣2(v﹣30)2+1,且﹣2<0,∴當v=30時,q達到最大值,q的最大值為1.答:當該路段的車流速度為30千米/小時,流量達到最大,最大流量是1輛/小時.(3)當v=12時,q=﹣2×122+120×12=1152,此時k=1152÷12=2,當v=18時,q=﹣2×182+120×18=1512,此時k=1512÷18=84,∴84<k≤2.答:當84<k≤2時,該路段將出現輕度擁堵.【點睛】本題主要考查二次函數的實際應用,理解二次函數的性質,是解題的關鍵.23、(1)C,②;(2)x1=+1,x2=﹣+1.【分析】(1)認真分析小明的解答過程即可發現其在第幾步出現錯誤、然后作答即可;(2)用配方法解該二元一次方程即可.【詳解】解:(1)由小明的解答過程可知,他采用的是配方法解方程,故選:C,他的求解過程從第②步開始出現錯誤,故答案為:②;(2)∵x2﹣6x=1∴x2﹣6x+9=1+9∴(x﹣1)2=10,∴x﹣1=±∴x=±+1∴x1=+1,x2=﹣+1.【點睛】本題考查解一元二次方程的解法,解答本題的關鍵是掌握一元二次方程的解法,主要方法有直接開平方法、配方法、因式分解法和公式法.24、(1);(2)①,②t的值為或,③當t=2時,四邊形ACQP的面積有最小值,最小值是.【分析】(1)求出對稱軸,再求出y=與拋物線的兩個交點坐標,將其代入拋物線的頂點式即可;(2)①先求出A、B、C的坐標,寫出OB、OC的長度,再求出BC的長度,由運動速度即可求出t的取值范圍;②當△BPQ為直角三角形時,只存在∠BPQ=90°或∠PQB=90°兩種情況,分別證△BPQ∽△BOC和△BPQ∽△BCO,即可求出t的值;③如圖,過點Q作QH⊥x軸于點H,證△BHQ∽△BOC,求出HQ的長,由公式S四邊形ACQP=S△ABC-S△BPQ可求出含t的四邊形ACQP的面積,通過二次函數的圖象及性質可寫出結論.【詳解】解:(1)∵在拋物線中,當x=﹣1和x=3時,y值相等,∴對稱軸為x=1,∵y=與拋物線有兩個交點,其中一個交點的橫坐標是6,另一個交點是這條拋物線的頂點M,∴頂點M(1,),另一交點為(6,6),∴可設拋物線的解析式為y=a(x﹣1)2,將點(6,6)代入y=a(x﹣1)2,得6=a(6﹣1)2,∴a=,∴拋物線的解析式為(2)①在中,當y=0時,x1=﹣2,x2=4;當x=0時,y=﹣3,∴A(﹣2,0),B(4,0),C(0,﹣3),∴在Rt△OCB中,OB=4,OC=3,∴BC==5,∴,∵<4,∴②當△BPQ為直角三角形時,只存在∠BPQ=90°或∠PQB=90°兩種情況,當∠BPQ=90°時,∠BPQ=∠BOC=90°,∴PQ∥OC,∴△BPQ∽△BOC,∴,即,∴t=;當∠PQB=90°時,∠PQB=∠BOC=90°,∠PBQ=∠CBO,∴△BPQ∽△BCO,∴,即,∴t=,綜上所述,t的值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論