經(jīng)濟學Sampling-抽樣技術統(tǒng)計學專業(yè)課課件_第1頁
經(jīng)濟學Sampling-抽樣技術統(tǒng)計學專業(yè)課課件_第2頁
經(jīng)濟學Sampling-抽樣技術統(tǒng)計學專業(yè)課課件_第3頁
經(jīng)濟學Sampling-抽樣技術統(tǒng)計學專業(yè)課課件_第4頁
經(jīng)濟學Sampling-抽樣技術統(tǒng)計學專業(yè)課課件_第5頁
已閱讀5頁,還剩163頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

Sampling:

Design&AnalysisSharonL.LohrArizonaStateUniversitySampling:

Design&AnalysisShContentsCHAPTER1Introduction1.1ASampleControversy1.2RequirementsofaGoodSample1.3SelectionBias1.4MeasurementBias1.5QuestionnaireDesign1.6SamplingandNonsamplingErrorsCHAPTER2SimpleProbabilitySamples2.1TypesofProbabilitySamplesContents2.2FrameworkforProbabilitySampling2.3SimpleRandomSampling2.4ConfidenceIntervals2.5SampleSizeEstimation2.6SystematicSampling2.7RandomizationTheoryResultsforSimpleRandomSampling*2.8AModelforSimpleRandomSampling*2.9WhenShouldaSimpleRandom2.2FrameworkforProbabSampleBeUsed?CHAPTER3RatioandRegressionEstimation3.1RatioEstimation3.2RegressionEstimation3.3EstimationinDomains3.4ModelsforRatioandRegressionEstimation*3.5ComparisonSampleBeUsed?CHAPTER4StratifiedSampling4.1WhatIsStratifiedSampling?4.2TheoryofStratifiedSampling4.3SamplingWeights4.4AllocatingObservationstoStrata4.5DefiningStrata4.6AModelforStratifiedSampling*4.7Post-stratification4.8QuotaSamplingCHAPTER4StratifiedSamplingCHAPTER5ClusterSamplingwithEqualProbabilities5.1NotationforClusterSampling5.2One-StageClusterSampling5.3Two-StageClusterSampling5.4UsingWeightsinClusterSamples5.5DesigningaClusterSample5.6SystematicSampling5.7ModelsforClusterSampling*CHAPTER5ClusterSamplingwi

CHAPTER1IntroductionWhenstatisticsarenotbasedonstrictlyaccuratecalculations,theymisleadinsteadofguide.Themindeasilyletsitselfbetakeninbythefalseappearanceofexactitudewhichstatisticsretainintheirmistakes,andconfidentlyadeptserrorsclothedintheformofmathematicaltruth.

--AlexisdeTocqueville,DEMOCRACYINAMERICACHAPTER11.1ASamplingControversyShereHite'sbook“WomenandLove:ACulturalRevolutioninprogress”(1987):

84%ofwomenare"notsatisfiedemotionallywiththeirrelationships"(p804).70%ofallwomen"marriedfiveormoreyearsarehavingsexoutsideoftheirmarriages"(p856).1.1ASamplingControversy95%ofwomen"reportformsofemotionalandpsychologicalharassmentfrommenwithwhomtheyareinloverelationships(p810).84%ofwomenreportformsofcondescensionfromthemenintheirloverelationships(p809).*Harassment:toannoypersistentlysexualharassment:uninvitedandunwelcomeverbalorphysicalbehaviorofasexualnatureespeciallybyapersoninauthoritytowardasubordinate(asanemployeeorstudent)95%ofwomen"reportformsof*Condescension:1.voluntarydescentfromone'srankordignityinrelationswithaninferior;2.Theactofcondescendingoraninstanceofit.3.Patronizinglysuperiorbehaviororattitude.*Vignette:Adecorativedesignplacedatthebeginningorendofabookorchapterofabookoralongtheborderofapage.*Condescension:1.voluntaryThefollowingcharacteristicsofthesurveymakeHite’sresultunsuitableforgenerali-zation.Thesamplewasself-selected.Thequestionnairesweremailedtospecificgroups.Thequestionsinthesurveyaretoocomplicated.Manyofthequestionsarevague,usingwordssuchaslove.Manyofthequestionsareleading.

Thefollowingcharacteristics1.2RequirementsofaGoodSampleAperfectsampleshould:1.beascaled-downversionofthepopulation;2.canmirrorcharacteristicsofthewholepopulationSomedefinitionstomakethenotionofagoodsamplemoreprecise:ObservationunitAnobjectonwhichameasurementistaken.TargetpopulationThecompletecollectionofobservationswewanttostudy.Sample

Asubsetofapopulation.1.2RequirementsofaGoodSSampledpopulationThecollectionofallpossibleobservationunitsthatmighthavebeenchoseninasample.Thepopulationfromwhichthesamplewastaken.SamplingunitTheunitweactuallysample.Samplingframe

Thelistofsamplingunits.SampledpopulationThecolleTargetpopulationSamplingframepopulationSampledpopulationNotreachableRefusetorespondNotcapabletorespondNoteligibleforsurveyTargetpopulationInanidealsurvey,thesampledpopulationwillbeidenticaltothetargetpopulation,butthisidealisrarelymetexactly.IntheHitestudyTargetpopulation:alladultwomenintheUnitedStatesSampledpopulation:womenbelongingtowomen'sorganizationswhowouldreturnthequestionnaire.

Inanidealsurvey,thesampleIntheNationalCrimeVictimizationSurvey:Targetpopulation:allhouseholdsintheUnitedStatesSampledpopulation:householdsinthesamplingframethatare"athome"andagreetoanswerquestions.IntheNationalCrimeVictimizIntheNationalPesticideSurvey:Targetpopulation:allcommunitywatersystemsandruraldomesticwellsintheUnitedStates.Sampledpopulation:allcommunitywatersystemsandallidentifiabledomesticwellsoutsideofgovernmentreservationsthatbelongedtohouseholdswillingtocooperatewiththesurvey.IntheNationalPesticideSurvInpublicopinionpolls:Targetpopulation:personswhowillvoteinthenextelectionSampledpopulation:personswhocanbereachedbytelephoneandsaytheyarelikelytovoteinthenextelection

Inpublicopinionpolls:1.3SelectionBias

Thefollowingexamplesindicatesomewaysinwhichselectionbiascanoccur:Useasample-selectionprocedurethat,unknowntotheinvestigators,dependsonsomecharacteristicassociatedwiththepropertiesofinterest.Deliberatelyorpurposefullyselecta"representative"sample.–forinstance:”a

judgmentsample”Misspecifythetargetpopulation.1.3SelectionBiasFailtoincludeallthetargetpopulationinthesamplingframe,calledunder-coverage.Substituteaconvenientmemberofapopulationforadesignatedmemberwhoisnotreadilyavailable.Failtoobtainresponsesfromtheentirechosensample.Thisiscallednon-responseAllowthesampletoconsistentirelyofvolunteers

FailtoincludeallthetargetCASESTUDYLiteraryDigestAneververyfamousmagazineinUSAwhobegantakingpollstoforecasttheoutcomeoftheUSApresidentialelectionin1912.theirpollsattainedareputationforaccuracybecausetheyforecastthecorrectwinnerineveryelectionbetween1912and1932.CASESTUDYIn1932,forexample,thepollpredictedthatRooseveltwouldreceive56%ofthepopularvoteand474votesintheelectoralcollege;intheactualelection.Rooseveltreceived58%ofthepopularvoteand472votesintheelectoralcollege.

Electoralcollege:(intheU.S.)abodyofpeoplerepresentingthestatesoftheU.S.,whoformallycastvotesfortheelectionofthepresidentandvicepresident.In1932,forexample,thepOnOctober31,1936,thepollpredictedTheoutcomeis:RepublicanAlfLandon:55%PresidentRoosevelt:41%RepublicanAlfLandon:37%PresidentRoosevelt:61%OnOctober31,1936,thepollpTworeasonsthataccountedfortheoutcome:Oneproblemmayhavebeenundercoverageinthesamplingframe,whichreliedheavilyontelephonedirectoriesandautomobileregistrationlist;Thelowresponserate(lessthan25%)tothesurveywaslikelythesourceofmuchoftheerror.

OnelessontobelearntfromtheLiteraryDigestpollisthatthesheersizeofasampleisnoguaranteeofitaccuracyTworeasonsthataccountedfor1.4MeasurementBiasInfollowingcases,itismostlikelytohappen:Peoplesometimesdonottellthetruth.PeopledonotunderstandthequestionsPeopleforgetPeoplegivedifferentanswerstodifferentinterviewersPeoplecatertotheinterviewersTheinterviewermayhavehisowninclinationtothesurveyCertainwordsmayhavevaguemeaningThequestionnairedoesn’twordwellorisnotarrangedinagoodorder1.4MeasurementBias1.5QuestionnaireDesignDecidewhatyouwanttofindoutAlwaystestyourquestionsbeforetakingthesurveyKeepitsimpleandclearUsespecificquestionsinsteadofgeneralonesRelateyourquestionstotheconceptofinterest.Decidewhethertouseopenorclosedquestions(openquestions:therespondentsisnotpromptedwithcategoriesforresponse;closedones:multiplechoices)1.5QuestionnaireDesignReporttheactualquestionaskedAvoidquestionsthatpromptormotivatetherespondenttosaywhatyouwouldliketohearUseforced-choice,ratherthanagreeordisagreequestionsAskonlyoneconceptineachquestionPayattentiontoquestion-ordereffectsReporttheactualquestionask1.6samplingandnonsamplingerrorssamplingerrorsTheerrorthatresultsfromtakingonesampleinsteadofexaminingthewholepopulationnonsamplingerrorsTheerrorthatcannotbeattributedtothesample-to-samplevariability,causedchieflybyfollowingcauses:SelectionbiasIncorrectanswers1.6samplingandnonsamplingeIncompletevalueNonresponseSelectionbiasandmeasurementbiasareexamplesofnonsamplingerrorsInalotofcases,nonsamplingerrorsmayhavemuchworseeffectonaccuracyofthesamplethansamplingonesIncompletevalueWhydoweusesampling?Samplingcanprovidereliableinformationatfarlesscostthanacensus.Datacanbecollectedmorequickly,soestimatescanbepublishedinatimelyfashion.Finally,andlesswellknown,estimatesbasedonsamplesurveysareoftenmoreaccuratethanthosebasedonacensusbecauseinvestigatorscanbemorecarefulwhencollectingdataWhydoweusesampling?CHAPTER2SimpleProbabilitySamplesProbabilitySampling:inaprobabilitysample,eachunitinthepopulationhasaknown(butnotcertainlyequal)probabilityofselection,andachancemethodsuchasusingnumbersfromarandomnumbertableisusedtochoosethespecificunitstobeincludedinthesample.2.1TypesofProbabilitySamples1,Simplerandomsample2,Stratifiedsample3,ClustersampleCHAPTER2SimpleProbabilityAsimplerandomsample(SRS)isthesimplestformofprobabilitysample.AnSRSofsizenistakenwheneverypossiblesubsetofnunitsinthepopulationhasthesamechanceofbeingthesample.Inastratifiedrandomsample,thepopulationisdividedintosubgroupscalledstrata.ThenanSRSisselectedfromeachstratum,andtheSRSsinthestrataareselectedindependently.Asimplerandomsample(SRS)iInaclustersample,observationunitsinthepopulationareaggregatedintolargersamplingunits,calledclusters.ThenanSRSisdrawnundertheconditionthateachclusterisviewedasaunit.2.2FrameworkforProbabilitySamplingAspecialcaseforitisN=4,whichresultsin:Itspossiblesamples(n=2)are:Inaclustersample,observatiExample2.1:Example2.1:Example2.2:i1,2,3,4,5,6,7,81,2,4,4,7,7,7,8Example2.2:i1,2,3,4,5Theexpectedvalueof,isthemeanofthesamplingdistributionof:k2228303234363840424446485052581623746126473261TheexpectedvalueofThevarianceofthesamplingdistributionof,i.e,is:ThevarianceofthesamplingdTheMeanSquaredError(MSE)ratherthanvariancetomeasuretheaccuracyofanestimatoris:TheMeanSquaredError(MSE)rAnestimatorisunbiasedif:Anestimatorispreciseifthefollowingissmall:Anestimatorisaccurateifthefollowingissmall:Anestimatorisunbiasedif:Someindicatorsforthepopulation:Thepopulationtotalis:Themeanofthepopulationis:Thevarianceofthepopulationvaluesaboutthemeanis:SomeindicatorsforthepopulaThestandarddeviationofthepopulationvaluesaboutthemeanis:Thecoefficientofvariation(CV)is:Proportionisaspecialcaseofmean:ThestandarddeviationoftheThedistinctionbetweenmeanandproportionis:inthecaseofmean,thevariablecantakemorethantwovalues;whereasinproportioncase,itcantakeandcanonlytaketwovalues.ThedistinctionbetweenmeanWherethevariableis:Wherethevariableis:2.3SimpleRandomSamplingTherearetwotypesofSimpleRandomSample:1SimpleRandomSamplewithreplacement(SRSWR).Inthiscase,thereare

possiblesamplesandwemaygetduplicates;2.3SimpleRandomSampling2SimpleRandomSamplewithreplacement(SRS).Inthiscase,thereare

possiblesamplesandwemaynotgetduplicates.[經(jīng)濟學]Sampling-抽樣技術統(tǒng)計學專業(yè)課課件ForestimatingthepopulationmeaninanSRS,weusethesamplemean:Theisanunbiasedestimatorofthepopulationmean,andthevarianceofis:Inwhichiscalledthefinitepopulationcorrection(fpc):ForestimatingthepopulationForestimatingthepopulationvariance,weusethesamplevariance:Anunbiasedestimatorofisasfollow:ForestimatingthepopulationButtheestimatedvarianceofisusuallyreportedbyitsstandarderror(SE):Theestimatedcoefficientofvariationofanestimateis:ButtheestimatedvarianceofAllthisresultsapplytotheestimationofapopulationtotal,t,since:Theunbiasedestimatoroftis:Itsvarianceis:Buttheunbiasedestimatorofthisvarianceis:AllthisresultsapplytothesinceAsforproportionvariable,theparametersare:thussinceAsforproportionvariablTheestimatorsare:Where:Theestimatorsare:Where:2.4ConfidenceIntervals

Usedtoindicatehowaccurateourestimatesare.Usuallyappearsinthisway:Ifwetakeasanexample,thenwehave:2.4ConfidenceIntervalsIfThedistinctionbetweendistributionandsamplingdistributionfromit:A“distribution”referstotheoriginaldistributionofavariabley,whereasa“samplingdistribution”referstothedistributiongeneratedfromtheoriginalone,likethedistributionofand.Example2.111/4,14/4,15/4,16/4,17/4,,…,29/4Withauniformdistribution,only8cases.Withanon-uniformdistribution,upto15cases.ThedistinctionbetweendistriThedistinctionbetweenlawoflargenumbersandcentrallimittheorem:“l(fā)awoflargenumbers”saysthatthereisalmostnodifferencebetweensampleandpopulationmeanifnissufficientlylarge,bothdependentlyorindependently,withthesameordifferentdistribution;whereas“centrallimittheorem”saysthatthedistributionofanysamplemeanconvergestonormaldistributionifnissufficientlylarge,withthesameordifferentdistribution.ThedistinctionbetweenlawofBernoulli’slawoflargenumbersis:Linderbergandlevy’scentrallimittheoremis:Bernoulli’slawoflargenumb2.5SampleSizeEstimationAninvestigatoroftenmeasuresseveralvariablesandhasanumberofgoalsforasurvey.AnyonedesigninganSRSmustdecidewhatamountofsamplingerrorintheestimatesistolerableandmust

balancetheprecisionoftheestimateswiththecostofthesurvey.2.5SampleSizeEstimationFollowthesestepstoestimatethesamplesize:

Askquestionsas:A:Whatisexpectedofthesample?B:HowmuchprecisiondoIneed?C:Whataretheconsequencesofthesampleresults?D:Howmucherroristolerable?Findanequationrelatingthesamplesizenandourexpectationsofthesample

FollowthesestepstoestimateEstimateanyunknownquantitiesandsolveforn.Ifthesamplesizeyoucalculatedinlaststepismuchlargerthanyoucanafford.Gobackandadjustsomeoftheexpec-tationsforthesurveyandtryagain.Specifythetolerableerror

EstimateanyunknownquantitieFindanequationSolvingforn,wehave:Inrelativeprecisioncase,wehave

Findanequation2.7RandomizationTheoryResultsforSimpleRandomSampling*ToverifyandDefine,thenwehave2.7RandomizationTheoryRe

[經(jīng)濟學]Sampling-抽樣技術統(tǒng)計學專業(yè)課課件Asaconsequenceofequation(2.18)

inordertocalculatethevarianceof,notethat:

Asaconsequenceofequatio

Nowletusprove:

Proof:

Nowletusprove:

CHAPTER3RatioandRegressionEstimationExampleincensusbyLaplaceCHAPTER3RatioandRegressi3.1RatioEstimationEstimationmethodusingauxiliaryvariableDefine:

andThen,,,[經(jīng)濟學]Sampling-抽樣技術統(tǒng)計學專業(yè)課課件Ratioandregressionestimationbothtakeadvantageofthecorrelationcoefficientofxandyinthepopulation;thehigherthecorrelation,thebettertheywork.Definethepopulationcorrelationcoefficientofxandytobe:

Ratioandregressionestima3.1.1Whydoweuseratioestimation?Sometimeswesimplywanttoestimatearatio;AverageyieldperacrePercapitaincomeTheratioofliabilitiestoassetsTheratioofthefishcaughttothehoursspentfishing3.1.1WhydoweuseratioestiSometimeswewanttoestimateapopulationtotal,butthepopulationsizeNisunknown;SometimeswewanttoestimateRatioestimationisusedtoincreasetheprecisionofestimatedmeansandtotals.RatioestimationisusedtoinRatioestimationisusedtoadjustestimatesfromthesamplesothattheyreflectdemographicaltotals.Population:4000Sample:4002700females1300males240females160malesRatioestimationisusedtoad

tobecomeateacherSimpleestimation:Ratioestimation:240females160males84females40males240females84femalesRatioestimationisusedtoadjustnonresponse.Ratioestimationisusedtoad3.1.2BiasandMeanSquaredErrorofRatioEstimatorsRatioestimationisbiased,unlikeSRSestimation,butwithareducedvarianceasacompensatorforthepresenceofbias.Since:weget:3.1.2BiasandMeanSquaredThenwehave:Consequently,asshownbyHartleyandRoss(1954).Thenwehave:Anotherwaytoshowthisis:Thebiasofissmallif:1,thesamplesizenislarge;2,thesamplingfractionn/Nislarge;3,islarge4,issmall;5,thecorrelationRiscloseto1.Anotherwaytoshowthisis:Theproofforitis:Theproofforitis:[經(jīng)濟學]Sampling-抽樣技術統(tǒng)計學專業(yè)課課件IntheworksofHartley-Ross,anunbiasedestimatorfortheparameterBisgivenafterthefollowingisproved:Theunbiasedestimatoris:IntheworksofHartley-Ross,TheapproximatedMSEofis:TheapproximatedMSEofwillbesmallif:1,thesamplesizenislarge;2,thesamplingfractionn/Nislarge;3,thedeviationaboutthelineislarge;4,islarge;5,thecorrelationRiscloseto+1.TheapproximatedMSEofisTheproofforitis:And:Theproofforitis:And:[經(jīng)濟學]Sampling-抽樣技術統(tǒng)計學專業(yè)課課件Thereforeweget:[經(jīng)濟學]Sampling-抽樣技術統(tǒng)計學專業(yè)課課件Inpractice,Bisunknown,thenletItfollowsfromabove,wewillhave:Inpractice,Bisunknown,theTheCIscanbeconstructedas:Let’sjuststudytwoexamplesinthetextbook.TheCIscanbeconstructedas:3.1.2.1AccuracyoftheMSEApproximationFor(3.6)tobeagoodapproximationofMSE,wewantalargesamplesizen(>30),and3.1.2.2Advantageofratioestimation3.1.2.1AccuracyoftheMSEApThen,Sototheaccuracyoftheapproximation,holds,ifandonlyif:Then,3.2RegressionEstimationRatioestimationworksbestifthedataarewellfitbyastraightlinethroughtheorigin.Butsometimes,dataappeartobeevenlyscatteredaboutastraightlinethatdoesnotgothroughtheorigin,thatis,thedatalookasthoughtheusualstraight-lineregressionmodel

wouldprovideagoodfit.3.2RegressionEstimationwhere:Hereristhesamplecorrelationcoefficientofxandy.Liketheratioestimator,theregressionestimatorisbiased.[經(jīng)濟學]Sampling-抽樣技術統(tǒng)計學專業(yè)課課件Thebiasis:

LetThenThebiasis:[經(jīng)濟學]Sampling-抽樣技術統(tǒng)計學專業(yè)課課件Thatis:TheapproximationMSEissmallif:1,thesamplesizenislarge;2,thesamplingfractionn/Nislarge;3,issmall;4,thecorrelationRiscloseto-1or1.Thatis:Let,thentheStandardErroris:[經(jīng)濟學]Sampling-抽樣技術統(tǒng)計學專業(yè)課課件CHAPTER4StratifiedSampling4.1WhatIsStratifiedSampling?stratum:(1)ahorizontallayerofmaterial,especiallyoneofseveralparallellayersarrangedoneontopofanother;(2)alevelofsocietycomposedofpeoplewithsimilarsocial,cultural,oreconomicstatusstrata:thepluralformofstratumstratify:toform,arrange,ordepositinlayers.CHAPTER4StratifiedSamplingWhydoweuseStratifiedSampling?1,tobeprotectedfromthepossibilityofobtainingvery“bad”sample;Population:Sample:2500Females1500Males150Males250FemalesWhydoweuseStratifiedS2,tohavedataofknownprecisionforsubgroups;Population:Sample:3500Females500Males250Females150Males35005002501503,inordertoadministerasamplemoreconvenientlyortolowercostforthesurvey;MailsurveyPersonalinterviewTelephoneinterview……3,inordertoadministerasa4,toproducemorepreciseestimatesforthewholepopulation(ifdonecorrectly)BloodPressure(byage)ConcentrationofPlants(bytypeofterrain)

YoungsterstheMiddle-agedWoodlandMarshDotagesDrylandYoungsterstheWoodlandMarshDo4.2TheoryofStratifiedSamplingDefinition:Instratifiedrandomsampling,thesimplestformofstratifiedsampling.WeindependentlytakeanSRSfromeachstratumsothatnh

observationsarerandomlyselectedfromthepopulationunitsinstratumh.DefineShtobethesetofnh

unitsintheSRSforstratumh.4.2TheoryofStratifiedSaNotationforStratificationThepopulationsizeis:valueofjthunitinstratumh:

populationtotalinstratumh:

overallpopulationtotal:populationmeaninstratumh:NotationforStratification

overallpopulationmean:populationvarianceinstratumh:Thecorrespondingquantitiesforthesampleare:

(Curlicue:adecorativecurlortwistincalligraphyorinthedesignofanobject)

[經(jīng)濟學]Sampling-抽樣技術統(tǒng)計學專業(yè)課課件Thenwehavetheestimationforthepopulationas:andThepropertiesoftheseestimatorsfollowdirectlyfromthepropertiesofSRSestimators:Unbiasedness:Varianceoftheestimators:ThenwehavetheestimationfoVarianceestimatorsforstratifiedsamples:[經(jīng)濟學]Sampling-抽樣技術統(tǒng)計學專業(yè)課課件4.3SamplingWeightsDenote:(samplingweight)and(samplingfraction)Thenweget:

4.3SamplingWeightsandthus:

andthus:4.4AllocatingObservationstoStrata4.4.1ProportionalAllocationAnallocationmethodistoletthenumberofsampledunitineachstratumbeproportionaltothesizeofthecorrespondingstratum.Theprobabilityofselectionπhjisthesamen/Nforallstrata.

4.4AllocatingObsesinceAsforSRS,wehave

since

PopulationANOVAtable

SourcedfSumofsquaresBetweenstrataWithinstrataH-1

N-HTotal,aboutN-1SourcedfTherefore

Ifonly

ThereforeThefollowingwillhold:Virtually,witharelativelylargerstratumsize,wehaveAndthisresultsin:

Thefollowingwillhold:4.4.2OptimalAllocationLetand

4.4.2OptimalAllocationWeget:Wesampleheavilywithinastratumif:Thestratumaccountsforalargepartofthepopulation;Thevariancewithinthestratumislarge,wesamplemoreheavilytocompensatefortheheterogeneity.SamplinginthestratumisinexpensiveWeget:4.4.4DeterminethesamplesizeofthepopulationSince:Ifthefpc’sarenegligibleandifthenormalapproximationisvalid,theCIcanbe:

Supposetheabsoluteerroris,i.e.,wethenhave.Practically,theinthevwillbesubstitutedwith

4.4.4DeterminethesamplesizCHAPTER5ClusterSamplingwithEqualProbabilitiesRelativeConcepts:ClusterPrimarysamplingunits(psu’s)Secondarysamplingunits(ssu’s)Definition:seetheexampleonthetextbookWhydoweuseClusterSampling?1.Constructingsamplingframelistofobservationunitsmaybedifficult,expensive,orimpossible2.Thepopulationmaybewidelydistributedgeographicallyandmayoccurinnaturalclusterssuchashouseholdsorschools.CHAPTER5ClusterSamplingwiSimilaritiesanddifferencesbetweenstratumandclusterSimilaritiesbothareagroupingofthemembersofthepopulation;Differences(1)forstratasampling:selectanSRSsampleunitswithineverystratum;forstratasampling:selectanSRSclustersfromthepopulation,theunitsineachclusterconstitutingthewholesample.(2)Instratifiedsamplingcase:thesamplingmayincreasetheprecision;whereasinclustersampling,thesamplingmaydecreasetheprecision,butmayresultinmoreinformationperdollarspentSimilaritiesanddifferencesb5.1NotationforClusterSamplingyij:measurementforjthelementinithpsu

psulevel-populationquantities:N=numberofpsu’sinthepopulationMi=numberofssu’sinithpsu=totalnumberofpsu’sinthepopulation

=totalintheithpsu’s=population

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論