2022年山東青島嶗山區數學九年級第一學期期末考試模擬試題含解析_第1頁
2022年山東青島嶗山區數學九年級第一學期期末考試模擬試題含解析_第2頁
2022年山東青島嶗山區數學九年級第一學期期末考試模擬試題含解析_第3頁
2022年山東青島嶗山區數學九年級第一學期期末考試模擬試題含解析_第4頁
2022年山東青島嶗山區數學九年級第一學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖所示的幾何體是由六個小正方體組合而成的,它的俯視圖是()A. B. C. D.2.如圖,線段AB是⊙O的直徑,弦CD丄AB,∠CAB=20°,則∠BOD等于()A.20° B.30° C.40° D.60°3.下列幾何圖形中,是中心對稱圖形但不是軸對稱圖形的是()A.圓 B.正方形 C.矩形 D.平行四邊形4.如圖,平行于x軸的直線AC分別交函數y=x(x≥0)與y=x(x≥0)的圖象于B,C兩點,過點C作y軸的平行線交y=x(x≥0)的圖象于點D,直線DE∥AC交y=x(x≥0)的圖象于點E,則=()A. B.1 C. D.3﹣5.過反比例函數圖象上一點作兩坐標軸的垂線段,則它們與兩坐標軸圍成的四邊形面積為()A.-6 B.-3 C.3 D.66.二次函數y=﹣x2+2x﹣4,當﹣1<x<2時,y的取值范圍是()A.﹣7<y<﹣4 B.﹣7<y≤﹣3 C.﹣7≤y<﹣3 D.﹣4<y≤﹣37.一個直角三角形的兩直角邊分別為x,y,其面積為1,則y與x之間的關系用圖象表示為()A. B.C. D.8.若,設,,,則、、的大小順序為()A. B. C. D.9.如圖,在Rt△ABC中,∠C=90°,sinA=,AC=6cm,則BC的長度為()A.6cm B.7cm C.8cm D.9cm10.老師出示了如圖所示的小黑板上的題后,小華說:過點;小明說:;小穎說:軸被拋物線截得的線段長為2,三人的說法中,正確的有()A.1個 B.2個 C.3個 D.0個二、填空題(每小題3分,共24分)11.若,均為銳角,且滿足,則__________.12.小明與父母國慶節從杭州乘動車回臺州,他們買到的火車票是同一排相鄰的三個座位,那么小明恰好坐在父母中間的概率是_________.13.如圖,在矩形中,的角平分線與交于點,的角平分線與交于點,若,,則=_______.14.如圖,ABCD是平行四邊形,AB是⊙O的直徑,點D在⊙O上,AD=OA=2,則圖中陰影部分的面積為______.15.一元二次方程(x+1)(x-3)=2x-5根的情況_______.(表述正確即可)16.方程的解是_____.17.在平面直角坐標系中,點P(﹣2,1)關于原點的對稱點P′的坐標是_____________.18.如圖,過y軸上任意一點P,作x軸的平行線,分別與反比例函數和的圖象交于點A和點B,若C為x軸上任意一點,連接AC,BC,則的面積是________.三、解答題(共66分)19.(10分)如圖,在中,,.,平分交于點,過點作交于點,點是線段上的動點,連結并延長分別交,于點,.(1)求的長.(2)若點是線段的中點,求的值.20.(6分)如圖,四邊形為正方形,點的坐標為,點的坐標為,反比例函數的圖象經過點.(1)的線段長為;點的坐標為;(2)求反比例函數的解析式:(3)若點是反比例函數圖象上的一點,的面積恰好等于正方形的面積,求點的坐標.21.(6分)已知,如圖,拋物線的頂點為,經過拋物線上的兩點和的直線交拋物線的對稱軸于點.(1)求拋物線的解析式和直線的解析式.(2)在拋物線上兩點之間的部分(不包含兩點),是否存在點,使得?若存在,求出點的坐標;若不存在,請說明理由.(3)若點在拋物線上,點在軸上,當以點為頂點的四邊形是平行四邊形時,直接寫出滿足條件的點的坐標.22.(8分)地下停車場的設計大大緩解了住宅小區停車難的問題,如圖是龍泉某小區的地下停車庫坡道入口的設計示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據規定,地下停車庫坡道入口上方要張貼限高標志,以便告知駕駛員所駕車輛能否安全駛入.小剛認為CD的長就是所限制的高度,而小亮認為應該以CE的長作為限制的高度.小剛和小亮誰說得對?請你判斷并計算出正確的限制高度.(結果精確到0.1m,參考數據:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)23.(8分)某中學舉行“中國夢,我的夢”的演講比賽,賽后整理參賽學生的成績,將學生的成績分為A、B、C、D四個等級,并將結果繪制成如圖所示的條形統計圖和扇形統計圖,但均不完整,請你根據統計圖解答下列問題.(1)參加比賽的學生共有名,在扇形統計圖中,表示“D等級”的扇形的圓心角為度,圖中m的值為;(2)補全條形統計圖;(3)組委會決定分別從本次比賽中獲利A、B兩個等級的學生中,各選出1名學生培訓后搭檔去參加市中學生演講比賽,已知甲的等級為A,乙的等級為B,求同時選中甲和乙的概率.24.(8分)如圖為某海域示意圖,其中燈塔D的正東方向有一島嶼C.一艘快艇以每小時20nmile的速度向正東方向航行,到達A處時得燈塔D在東北方向上,繼續航行0.3h,到達B處時測得燈塔D在北偏東30°方向上,同時測得島嶼C恰好在B處的東北方向上,此時快艇與島嶼C的距離是多少?(結果精確到1nmile.參考數據:≈1.41,≈1.73,≈2.45)25.(10分)如圖,四邊形是平行四邊形,連接對角線,過點作與的延長線交于點,連接交于.(1)求證:;(2)連結,若,且,求證:四邊形是正方形.26.(10分)某公司今年1月份的生產成本是400萬元,由于改進技術,生產成本逐月下降,3月份的生產成本是361萬元.假設該公司2、3、4月每個月生產成本的下降率都相同.(1)求每個月生產成本的下降率;(2)請你預測4月份該公司的生產成本.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據從上邊看得到的圖形是俯視圖,可得答案.【詳解】解:從上邊看第一列是一個小正方形,第二列是兩個小正方形,第三列是兩個小正方形,

故選:D.【點睛】本題考查了簡單組合體的三視圖,從上邊看得到的圖形是俯視圖.2、C【解析】試題分析:由線段AB是⊙O的直徑,弦CD丄AB,根據垂徑定理的即可求得:,然后由圓周角定理可得∠BOD=2∠CAB=2×20°=40°.故選C.考點:圓周角定理;垂徑定理.3、D【分析】根據中心對稱圖形和軸對稱圖形的定義逐一判斷即可.【詳解】A.圓是中心對稱圖形,也是軸對稱圖形,故本選項不符合題意;B.正方形是中心對稱圖形,也是軸對稱圖形,故本選項不符合題意;C.矩形是中心對稱圖形,也是軸對稱圖形,故本選項不符合題意;D.平行四邊形是中心對稱圖形,不是軸對稱圖形,故本選項符合題意.故選D.【點睛】此題考查的是中心對稱圖形和軸對稱圖形的識別,掌握中心對稱圖形和軸對稱圖形的定義是解決此題的關鍵.4、D【分析】設點A的縱坐標為b,可得點B的坐標為(,b),同理可得點C的坐標為(b,b),D點坐標(,3b),E點坐標(,3b),可得的值.【詳解】解:設點A的縱坐標為b,因為點B在的圖象上,所以其橫坐標滿足=b,根據圖象可知點B的坐標為(,b),同理可得點C的坐標為(,b),所以點D的橫坐標為,因為點D在的圖象上,故可得y==3b,所以點E的縱坐標為3b,因為點E在的圖象上,=3b,因為點E在第一象限,可得E點坐標為(,3b),故DE==,AB=所以=故選D.【點睛】本題主要考查二次函數的圖象與性質.5、D【分析】根據反比例函數的幾何意義可知,矩形的面積為即為比例系數k的絕對值,即可得出答案.【詳解】設B點坐標為(x,y),由函數解析式可知,xy=k=-6,則可知S矩形ABCO=|xy|=|k|=6,故選:D.【點睛】本題考查了反比例函數系數k的幾何意義,關鍵是理解圖中矩形的面積為即為比例系數k的絕對值.6、B【分析】先求出二次函數的對稱軸,再根據二次函數的增減性求出最小值和最大值即可.【詳解】解:∵y=﹣x2+2x﹣4,=﹣(x2﹣2x+4)=﹣(x﹣1)2﹣1,∴二次函數的對稱軸為直線x=1,∴﹣1<x<2時,x=1取得最大值為﹣1,x=﹣1時取得最小值為﹣(﹣1)2+2×(﹣1)﹣4=﹣7,∴y的取值范圍是﹣7<y≤﹣1.故選:B.【點睛】本題考查了二次函數與不等式,主要利用了二次函數的增減性和對稱性,確定出對稱軸從而判斷出取得最大值和最小值的情況是解題的關鍵.7、C【解析】試題分析:根據題意有:xy=2;故y與x之間的函數圖象為反比例函數,且根據xy實際意義x、y應大于0,其圖象在第一象限,即可判斷得出答案.解:∵xy=1∴y=(x>0,y>0).故選C.考點:反比例函數的應用;反比例函數的圖象.8、B【分析】根據,設x=1a,y=7a,z=5a,進而代入A,B,C分別求出即可.【詳解】解:∵,設x=1a,y=7a,z=5a,

∴=,

==1,

==1.

∴A<B<C.

故選:B.【點睛】本題考查了比例的性質,根據比例式用同一個未知數得出x,y,z的值進而求出是解題的關鍵.9、C【詳解】已知sinA=,設BC=4x,AB=5x,又因AC2+BC2=AB2,即62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),所以BC=4x=8cm,故答案選C.10、B【分析】根據圖上給出的條件是與x軸交于(1,0),叫我們加個條件使對稱軸是,意思就是拋物線的對稱軸是是題目的已知條件,這樣可以求出的值,然后即可判斷題目給出三人的判斷是否正確.【詳解】∵拋物線過(1,0),對稱軸是,∴解得,

∴拋物線的解析式為,

當時,,所以小華正確;∵,所以小明正確;

拋物線被軸截得的線段長為2,已知過點(1,0),則可得另一點為(-1,0)或(3,0),所以對稱軸為y軸或,此時答案不唯一,所以小穎錯誤.綜上,小華、小明正確,

故選:B.【點睛】本題考查了拋物線與軸的交點以及待定系數法求二次函數解析式,利用待定系數法求出拋物線的解析式是解題的關鍵.二、填空題(每小題3分,共24分)11、15【分析】利用絕對值和二次根式的非負性求得的值,然后確定兩個角的度數,從而求解.【詳解】解:由題意可知:∴∴∠α=60°,∠β=45°∴∠α-∠β=15°故答案為:15【點睛】本題考查絕對值及二次根式的非負性和特殊角的三角函數值,正確計算是本題的解題關鍵.12、【分析】根據題意列樹狀圖解答即可.【詳解】由題意列樹狀圖:他們的座位共有6種不同的位置關系,其中小明恰好坐在父母中間的2種,∴小明恰好坐在父母中間的概率=,故答案為:.【點睛】此題考查事件概率的計算,正確列樹狀圖解決問題是解題的關鍵.13、.【分析】先延長EF和BC,交于點G,再根據條件可以判斷三角形ABE為等腰直角三角形,并求得其斜邊BE的長,然后根據條件判斷三角形BEG為等腰三角形,最后根據,得出CG與DE的倍數關系,并根據進行計算即可.【詳解】延長EF和BC交于點G∵矩形ABCD中,∠B的角平分線BE與AD交于點E∴∴∴直角三角形ABE中,又∵∠BED的角平分線EF與DC交于點F∴∵∴∴∴由,,可得∴設,,則∴∴解得∴故答案為:.【點睛】本題考查了矩形與角平分線的綜合問題,掌握等腰直角三角形的性質和相似三角形的性質以及判定是解題的關鍵.14、【分析】根據題意,作出合適的輔助線,由圖可知,陰影部分的面積=△CBF的面積,根據題目的條件和圖形,可以求得△BCF的面積,從而可以解答本題.【詳解】連接OD、OF、BF,作DE⊥OA于點E,∵ABCD是平行四邊形,AB是⊙O的直徑,點D在⊙O上,AD=OA=2,∴OA=OD=AD=OF=OB=2,DC∥AB,∴△DOA是等邊三角形,∠AOD=∠FDO,∴∠AOD=∠FDO=60°,同理可得,∠FOB=60°,△BCD是等邊三角形,∵弓形DF的面積=弓形FB的面積,DE=OD?sin60°=,∴圖中陰影部分的面積為:=,故答案為:.【點睛】本題考查了求陰影部分面積的問題,掌握三角形面積公式是解題的關鍵.15、有兩個正根【分析】將原方程這里為一元二次方程的一般形式直接解方程或者求判別式與0的關系都可解題.【詳解】解:(x+1)(x-3)=2x-5整理得:,即,配方得:,解得:,,∴該一元二次方程根的情況是有兩個正跟;故答案為:有兩個正根.【點睛】此題考查解一元二次方程,或者求判別式與根的個數的關系.16、x1=2,x2=﹣1【解析】解:方程兩邊平方得,x2﹣x=2,整理得:x2﹣x﹣2=0,解得:x1=2,x2=﹣1.經檢驗,x1=2,x2=﹣1都是原方程的解,所以方程的解是x1=2,x2=﹣1.故答案為:x1=2,x2=﹣1.17、(2,﹣1)【詳解】解:點P(﹣2,1)關于原點的對稱點P′的坐標是(2,﹣1).故答案為(2,﹣1).【點睛】本題考查了關于原點對稱的點的坐標的特點,注意掌握兩個點關于原點對稱時,它們的坐標符號相反.18、1【分析】連接OA、OB,如圖,由于AB∥x軸,根據反比例函數k的幾何意義得到S△OAP=2,S△OBP=1,則S△OAB=1,然后利用AB∥OC,根據三角形面積公式即可得到S△CAB=S△OAB=1.【詳解】連接OA,OB,如圖軸,,,∴,,∴.故答案為:1.【點睛】本題考查了反比例函數(k≠0)系數k的幾何意義:從反比例函數(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標軸所圍成的矩形面積為|k|.三、解答題(共66分)19、(1);(2).【解析】(1)求出,在Rt△ADC中,由三角函數得出;(2)由三角函數得出BC=AC?tan60°=,得出,證明△DFM≌△AGM(ASA),得出DF=AG,由平行線分線段成比例定理得出,即可得出答案.【詳解】解:(1)∵平分,,∴,在中,,(2)∵∠C=90°,AC=6,∠BAC=60°,∴,∴,∵DE∥AC,∠DMF和∠AMG是對頂角,∴∠FDM=∠GAM,∠DMF=∠AMG,∵點M是線段AD的中點,∴,∵,∴,∴.由DE∥AC,得,∴,∴;【點睛】本題主要考查了全等三角形的性質與判定,特殊角的三角函數值,掌握全等三角形的性質與判定,特殊角的三角函數值是解題的關鍵.20、(1)5,;(2);(3)點的坐標為或【分析】(1)根據正方形及點A、B的坐標得到邊長,即可求得AD,得到點C的坐標;(2)將點C的坐標代入解析式即可;(3)設點到的距離為,根據的面積恰好等于正方形的面積求出h的值,再分兩種情況求得點P的坐標.【詳解】(1)∵點的坐標為,點的坐標為,∴AB=2-(-3)=5,∵四邊形為正方形,∴AD=AB=5,∵BC=AD=5,BC⊥y軸,∴C.故答案為:5,;把代入反比例函數得解得反比例函數的解析式為;(3)設點到的距離為.正方形的面積,的面積,解得.①當點在第二象限時,此時,點的坐標為②當點在第四象限時,此時,點的坐標為綜上所述,點的坐標為或【點睛】此題考查正方形的性質,待定系數法求反比例函數的解析式,利用反比例函數求點坐標,(3)中確定點P時不要忽略反比例函數的另一個分支.21、(1)拋物線的表達式為:,直線的表達式為:;(2)存在,理由見解析;點或或或.【解析】(1)二次函數表達式為:y=a(x-1)2+9,即可求解;

(2)S△DAC=2S△DCM,則,,即可求解;

(3)分AM是平行四邊形的一條邊、AM是平行四邊形的對角線兩種情況,分別求解即可.【詳解】解:(1)二次函數表達式為:,將點的坐標代入上式并解得:,故拋物線的表達式為:…①,則點,將點的坐標代入一次函數表達式并解得:直線的表達式為:;(2)存在,理由:二次函數對稱軸為:,則點,過點作軸的平行線交于點,設點,點,∵,則,解得:或5(舍去5),故點;(3)設點、點,,①當是平行四邊形的一條邊時,點向左平移4個單位向下平移16個單位得到,同理,點向左平移4個單位向下平移16個單位為,即為點,即:,,而,解得:或﹣4,故點或;②當是平行四邊形的對角線時,由中點公式得:,,而,解得:,故點或;綜上,點或或或.【點睛】本題考查的是二次函數綜合運用,涉及到一次函數、平行四邊形性質、圖形的面積計算等,其中(3),要注意分類求解,避免遺漏.22、小亮說的對,CE為2.6m.【解析】先根據CE⊥AE,判斷出CE為高,再根據解直角三角形的知識解答.【詳解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮說的對.答:小亮說的對,CE為2.6m.【點睛】本題主要考查了解直角三角形的應用,主要是正弦、正切概念及運算,解決本題的關鍵把實際問題轉化為數學問題.23、(1)20,72,1;(2)見解析;(3)【分析】(1)根據等級為A的人數除以所占的百分比求出總人數,用360°乘以D等級對應比例可得其圓心角度數,根據百分比的概念可得m的值;

(2)求出等級B的人數,補全條形統計圖即可;

(3)列表得出所有等可能的情況數,找出符合條件的情況數,即可求出所求的概率.【詳解】解:(1)根據題意得:3÷15%=20(人),

表示“D等級”的扇形的圓心角為×360°=72°;

C級所占的百分比為×100%=1%,

故m=1,

故答案為:20,72,1.(2)等級B的人數為20-(3+8+4)=5(人),

補全統計圖,如圖所示:(3)列表如下:乙BBBB甲甲、乙甲、B甲、B甲、B甲、BAA、乙A、BA、BA、BA、BAA、乙A、BA、BA、BA、B所有等可能的結果有15種,同時選中甲和乙的情況有1種,

所以同時選中甲和乙的概率為.【點睛】此題考查了條形統計圖,扇形統計圖,以及列表法與樹狀圖法,弄清題意是解本題的關鍵.24、此時快艇與島嶼C的距離是20nmile.【分析】過點D作DE⊥AB于點E,過點C作CF⊥AB于點F,由DE∥CF,DC∥EF,∠CFE=90°可得出四邊形CDEF為矩形,設DE=xnmile,則AE=x(nmile),BE=x(nmile),由AB=6nmile,可得出關于x的一元一次方程,解之即可得出x的值,再在Rt△CBF中,通過解直角三角形可求出BC的長.【詳解】解:過點D作DE⊥AB于點E,過點C作CF⊥AB于點F,如圖所示.則DE∥CF,∠DEA=∠CFA=90°.∵DC∥EF,∴四邊形CDEF為平行四邊形.又∵∠CFE=90°,∴?CDEF為矩形,∴CF=DE.根據題意,得:∠DAB=45°,∠DBE=60°,∠CBF=45°.設DE=x(nmile),在Rt△DEA中,∵tan∠DAB=,∴AE==x(nmile).在Rt△DEB中,∵tan∠DBE=,∴BE==x(nmile).∵AB=20×0.3=6(nmile),AE﹣BE=AB,∴x﹣x=6,解得:x=9+3,∴CF=DE=(9+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論