江蘇省邗江區2022-2023學年數學九上期末教學質量檢測模擬試題含解析_第1頁
江蘇省邗江區2022-2023學年數學九上期末教學質量檢測模擬試題含解析_第2頁
江蘇省邗江區2022-2023學年數學九上期末教學質量檢測模擬試題含解析_第3頁
江蘇省邗江區2022-2023學年數學九上期末教學質量檢測模擬試題含解析_第4頁
江蘇省邗江區2022-2023學年數學九上期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,⊙O是直角△ABC的內切圓,點D,E,F為切點,點P是上任意一點(不與點E,D重合),則∠EPD=()A.30° B.45° C.60° D.75°2.如圖,、分別切⊙于、,,⊙半徑為,則的長為()A. B. C. D.3.已知四邊形ABCD是平行四邊形,下列結論中正確的有()①當AB=BC時,四邊形ABCD是菱形;②當AC⊥BD時,四邊形ABCD是菱形;③當∠ABC=90°時,四邊形ABCD是菱形:④當AC=BD時,四邊形ABCD是菱形;A.3個 B.4個 C.1個 D.2個4.將拋物線向左平移3個單位長度,再向上平移3個單位長度后,所得拋物線的解析式為()A. B.C. D.5.拋物線向右平移4個單位長度后與拋物線重合,若(-1,3)在拋物線上,則下列點中,一定在拋物線上的是()A.(3,3) B.(3,-1) C.(-1,7) D.(-5,3)6.如圖,點是矩形的邊,上的點,過點作于點,交矩形的邊于點,連接.若,,則的長的最小值為()A. B. C. D.7.如果兩個相似三角形對應邊之比是,那么它們的對應中線之比是()A.1:3 B.1:4 C.1:6 D.1:98.如圖是二次函數圖象的一部分,其對稱軸是,且過點,下列說法:①;②;③;④若是拋物線上兩點,則,其中說法正確的是(

)A.①② B.②③ C.①②④ D.②③④9.若反比例函數的圖象在每一條曲線上都隨的增大而增大,則的取值范圍是()A. B. C. D.10.如圖,關于拋物線,下列說法錯誤的是()A.頂點坐標為(1,)B.對稱軸是直線x=lC.開口方向向上D.當x>1時,y隨x的增大而減小二、填空題(每小題3分,共24分)11.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=(x﹣1)2﹣4,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為_____.12.廊橋是我國古老的文化遺產如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數表達式為,為保護廊橋的安全,在該拋物線上距水面AB高為8米的點E,F處要安裝兩盞警示燈,則這兩盞燈的水平距離EF是______米精確到1米13.因式分解:______.14.如圖,在△ABC中,AC=4,將△ABC繞點C按逆時針旋轉30°得到△FGC,則圖中陰影部分的面積為_____.15.如圖,點是反比例函數圖象上的兩點,軸于點,軸于點,作軸于點,軸于點,連結,記的面積為,的面積為,則___________(填“>”或“<”或“=”)16.如圖,是將菱形ABCD以點O為中心按順時針方向分別旋轉90°,180°,270°后形成的圖形.若∠BAD=60°,AB=2,則圖中陰影部分的面積為.17.如果點A(-1,4)、B(m,4)在拋物線y=a(x-1)2+h上,那么m的值為_____.18.反比例函數在第一象限內的圖象如圖,點是圖象上一點,垂直軸于點,如果的面積為4,那么的值是__________.三、解答題(共66分)19.(10分)如圖,在一個可以自由轉動的轉盤中,指針位置固定,三個扇形的面積都相等,且分別標有數字1,2,1.(1)小明轉動轉盤一次,當轉盤停止轉動時,指針所指扇形中的數字是奇數的概率為.(2)小明和小穎用轉盤做游戲,每人轉動轉盤一次,若兩次指針所指數字之和為奇數,則小明勝,否則小穎勝(指針指在分界線時重轉),這個游戲對雙方公平嗎?請用樹狀圖或者列表法說明理由.20.(6分)如圖1,在中,∠B=90°,,點D,E分別是邊BC,AC的中點,連接將繞點C按順時針方向旋轉,記旋轉角為.問題發現:當時,_____;當時,_____.拓展探究:試判斷:當時,的大小有無變化?請僅就圖2的情況給出證明.問題解決:當旋轉至A、D、E三點共線時,直接寫出線段BD的長.21.(6分)圖1,圖2分別是一滑雪運動員在滑雪過程中某一時刻的實物圖與示意圖,已知運動員的小腿與斜坡垂直,大腿與斜坡平行,且三點共線,若雪仗長為,,,求此刻運動員頭部到斜坡的高度(精確到)(參考數據:)22.(8分)若矩形的長為,寬為,面積保持不變,下表給出了與的一些值求矩形面積.(1)請你根據表格信息寫出與之間的函數關系式;(2)根據函數關系式完成下表184223.(8分)如圖,拋物線與軸相交于兩點(點在點的左側),與軸相交于點.拋物線上有一點,且.(1)求拋物線的解析式和頂點坐標.(2)當點位于軸下方時,求面積的最大值.(3)①設此拋物線在點與點之間部分(含點和點)最高點與最低點的縱坐標之差為.求關于的函數解析式,并寫出自變量的取值范圍;②當時,點的坐標是___________.24.(8分)如圖,已知正方形的邊長為,點是對角線上一點,連接,將線段繞點順時針旋轉至的位置,連接、.(1)求證:;(2)當點在什么位置時,的面積最大?并說明理由.25.(10分)某商場購進一種每件價格為90元的新商品,在商場試銷時發現:銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關系.(1)求出y與x之間的函數關系式;(2)寫出每天的利潤W與銷售單價x之間的函數關系式,并求出售價定為多少時,每天獲得的利潤最大?最大利潤是多少?26.(10分)近日,國產航母山東艦成為了新晉網紅,作為我國本世紀建造的第一艘真正意義上的國產航母,承載了我們太多期盼,促使我國在偉大復興路上加速前行如圖,山東艦在一次測試中,巡航到海島A北偏東60°方向P處,發現在海島A正東方向有一可疑船只B正沿BA方向行駛。山東艦經測量得出:可疑船只在P處南偏東45°方向,距P處海里。山東艦立即從P沿南偏西30°方向駛出,剛好在C處成功攔截可疑船只。求被攔截時,可疑船只距海島A還有多少海里?(,結果精確到0.1海里)

參考答案一、選擇題(每小題3分,共30分)1、B【分析】連接OE,OD,由切線的性質易證四邊形OECD是矩形,則可得到∠EOD的度數,由圓周角定理進而可求出∠EPD的度數.【詳解】解:連接OE,OD,∵⊙O是直角△ABC的內切圓,點D,E,F為切點,∴OE⊥BC,OD⊥AC,∴∠C=∠OEC=∠ODC=90°,∴四邊形OECD是矩形,∴∠EOD=90°,∴∠EPD=∠EOD=45°,故選:B.【點睛】此題主要考查了圓周角定理以及切線的性質等知識,得出∠EOD=90°是解題關鍵.2、C【分析】連接PO、AO、BO,由角平分線的判定定理得,PO平分∠APB,則∠APO=30°,得到PO=4,由勾股定理,即可求出PA.【詳解】解:連接PO、AO、BO,如圖:∵、分別切⊙于、,∴,,AO=BO,∴PO平分∠APB,∴∠APO==30°,∵AO=2,∠PAO=90°,∴PO=2AO=4,由勾股定理,則;故選:C.【點睛】本題考查了圓的切線的性質,角平分線的判定定理,以及勾股定理,解題的關鍵是掌握角平分線的判定定理,得到∠APO=30°.3、D【分析】根據菱形的判定定理判斷即可.【詳解】解:∵四邊形ABCD是平行四邊形,∴①當AB=BC時,四邊形ABCD是菱形;故符合題意;②當AC⊥BD時,四邊形ABCD是菱形;故符合題意;③當∠ABC=90°時,四邊形ABCD是矩形;故不符合題意;④當AC=BD時,四邊形ABCD是矩形;故不符合題意;故選:D.【點睛】本題考查了菱形的判定定理,熟練掌握菱形的判定定理是解題的關鍵.4、D【分析】先得到拋物線y=x2-2的頂點坐標為(0,-2),再把點(0,-2)向左平移3個單位長度,再向上平移3個單位長度所得點的坐標為(-3,1),得到平移后拋物線的頂點坐標,然后根據頂點式寫出解析式即可.【詳解】解:拋物線y=x2-2的頂點坐標為(0,-2),把點(0,-2)向左平移3個單位長度,再向上平移3個單位長度所得點的坐標為(-3,1),

所以平移后拋物線的解析式為y=(x+3)2+1,

故選:D.【點睛】本題考查了二次函數圖象與幾何變換:先把二次函數的解析式配成頂點式,然后把拋物線的平移問題轉化為頂點的平移問題.5、A【分析】利用點的平移進行解答即可.【詳解】解:∵拋物線向右平移4個單位長度后與拋物線重合∴將(-1,3)向右平移4個單位長度的點在拋物線上∴(3,3)在拋物線上故選:A【點睛】本題考查了點的平移與函數平移規律,掌握點的規律是解題的關鍵.6、A【分析】由可得∠APB=90°,根據AB是定長,由定長對定角可知P點的運動軌跡是以AB為直徑,在AB上方的半圓,取AB得中點為O,連結DO,DO與半圓的交點是DP的長為最小值時的位置,用DO減去圓的半徑即可得出最小值.【詳解】解:∵,∴∠APB=90°,∵AB=6是定長,則P點的運動軌跡是以AB為直徑,在AB上方的半圓,取AB得中點為O,連結DO,DO與半圓的交點是DP的長為最小值時的位置,如圖所示:∵,,∴,由勾股定理得:DO=5,∴,即的長的最小值為2,故選A.【點睛】本題屬于綜合難題,主要考查了直徑所對的角是圓周角的應用:由定弦對定角可得動點的軌跡是圓,發現定弦和定角是解題的關鍵.7、A【解析】∵兩個相似三角形對應邊之比是1:3,∴它們的對應中線之比為1:3.故選A.點睛:本題考查相似三角形的性質,相似三角形的對應邊、對應周長,對應高、中線、角平分線的比,都等于相似比,掌握相似三角形的性質及靈活運用它是解題的關鍵.8、A【分析】根據二次函數的圖像和性質逐個分析即可.【詳解】解:對于①:∵拋物線開口向上,∴a>0,∵對稱軸,即,說明分子分母a,b同號,故b>0,∵拋物線與y軸相交,∴c<0,故,故①正確;對于②:對稱軸,∴,故②正確;對于③:拋物線與x軸的一個交點為(-3,0),其對稱軸為直線x=-1,根據拋物線的對稱性可知,拋物線與x軸的另一個交點為,1,0),故當自變量x=2時,對應的函數值y=,故③錯誤;對于④:∵x=-5時離對稱軸x=-1有4個單位長度,x=時離對稱軸x=-1有個單位長度,由于<4,且開口向上,故有,故④錯誤,故選:A.【點睛】本題考查了二次函數的圖像與其系數的符號之間的關系,熟練掌握二次函數的圖形性質是解決此類題的關鍵.9、B【分析】根據反比例函數的性質,可求k的取值范圍.【詳解】解:∵反比例函數圖象的每一條曲線上,y都隨x的增大而增大,

∴k?2<0,

∴k<2

故選B.【點睛】本題考查了反比例函數的性質,熟練掌握當k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內y隨x的增大而減小;當k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內y隨x的增大而增大.10、D【分析】根據拋物線的解析式得出頂點坐標是(1,-2),對稱軸是直線x=1,根據a=1>0,得出開口向上,當x>1時,y隨x的增大而增大,根據結論即可判斷選項.【詳解】解:∵拋物線y=(x-1)2-2,A、因為頂點坐標是(1,-2),故說法正確;B、因為對稱軸是直線x=1,故說法正確;C、因為a=1>0,開口向上,故說法正確;D、當x>1時,y隨x的增大而增大,故說法錯誤.故選D.二、填空題(每小題3分,共24分)11、1+【分析】利用二次函數圖象上點的坐標特征可求出點A、B、D的坐標,進而可得出OD、OA、OB,根據圓的性質可得出OM的長度,在Rt△COM中,利用勾股定理可求出CO的長度,再根據CD=CO+OD即可求出結論.【詳解】當x=0時,y=(x﹣1)2﹣4=﹣1,∴點D的坐標為(0,﹣1),∴OD=1;當y=0時,有(x﹣1)2﹣4=0,解得:x1=﹣1,x2=1,∴點A的坐標為(﹣1,0),點B的坐標為(0,1),∴AB=4,OA=1,OB=1.連接CM,則CM=AB=2,OM=1,如圖所示.在Rt△COM中,CO==,∴CD=CO+OD=1+.故答案為1+.【點睛】先根據二次函數與一元二次方程的關系,勾股定理,熟練掌握二次函數與一元二次方程的關系是解答本題的關鍵.12、【解析】由于兩盞E、F距離水面都是8m,因而兩盞景觀燈之間的水平距離就是直線y=8與拋物線兩交點的橫坐標差的絕對值.故有,即,,.所以兩盞警示燈之間的水平距離為:13、x(x-5)【分析】直接提公因式,即可得到答案.【詳解】解:,故答案為:.【點睛】本題考查了提公因式法因式分解,解題的關鍵是熟練掌握因式分解的方法.14、【解析】根據旋轉的性質可知△FGC的面積=△ABC的面積,觀察圖形可知陰影部分的面積就是扇形CAF的面積.【詳解】解:由題意得,△FGC的面積=△ABC的面積,∠ACF=30o,AC=4,由圖形可知,陰影部分的面積=△FGC的面積+扇形CAF的面積﹣△ABC的面積,∴陰影部分的面積=扇形CAF的面積=.故答案為:.【點睛】本題考查了旋轉的性質,不規則圖形及扇形的面積計算.15、=【分析】連接OP、OQ,根據反比例函數的幾何意義,得到,由OM=AP,OB=NQ,得到,即可得到.【詳解】解:如圖,連接OP、OQ,則∵點P、點Q在反比例函數的圖像上,∴,∵四邊形OMPA、ONQB是矩形,∴OM=AP,OB=NQ,∵,,∴,∴,∴;故答案為:=.【點睛】本題考查了反比例函數的幾何意義,解題的關鍵是熟練掌握反比例函數的幾何意義判斷面積相等.16、12﹣4【詳解】試題分析:如圖所示:連接AC,BD交于點E,連接DF,FM,MN,DN,∵將菱形ABCD以點O為中心按順時針方向分別旋轉90°,180°,270°后形成的圖形,∠BAD=60°,AB=2,∴AC⊥BD,四邊形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=﹣1,∴S正方形DNMF=2(﹣1)×2(﹣1)×=8﹣4,S△ADF=×AD×AFsin30°=1,∴則圖中陰影部分的面積為:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.故答案為12﹣4.考點:1、旋轉的性質;2、菱形的性質.17、1【分析】根據函數值相等兩點關于對稱軸對稱,可得答案.【詳解】由點A(﹣1,4)、B(m,4)在拋物線y=a(x﹣1)2+h上,得:(﹣1,4)與(m,4)關于對稱軸x=1對稱,m﹣1=1﹣(﹣1),解得:m=1.故答案為1.【點睛】本題考查了二次函數圖象上點的坐標特征,利用函數值相等兩點關于對稱軸對稱得出m﹣1=1﹣(﹣1)是解題的關鍵.18、1【分析】利用反比例函數k的幾何意義得到|k|=4,然后利用反比例函數的性質確定k的值.【詳解】解:∵△MOP的面積為4,∴|k|=4,∴|k|=1,∵反比例函數圖象的一支在第一象限,∴k>0,∴k=1,故答案為:1.【點睛】本題考查了比例系數k的幾何意義:在反比例函數y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.在反比例函數的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|,且保持不變.也考查了反比例函數的性質.三、解答題(共66分)19、(1);(2)不公平,理由見解析【分析】(1)由標有數字1、2、1的1個轉盤中,奇數的有1、1這2個,利用概率公式計算可得;(2)根據題意列表得出所有等可能的情況,得出這兩個數字之和是奇數與偶數的情況,再根據概率公式即可得出答案.【詳解】解:(1)∵在標有數字1、2、1的1個轉盤中,奇數的有1、1這2個,∴指針所指扇形中的數字是奇數的概率為,故答案為:;(2)不公平,理由如下:列表如下:121121421451456由表可知,所有等可能的情況數為9種,其中兩次指針所指數字之和為奇數的有4種結果,和為偶數的有5種結果,所以小明獲勝的概率為,小穎獲勝的概率為,由≠知此游戲不公平.【點睛】此題考查的是求概率問題,掌握列表法和概率公式是解決此題的關鍵.20、(1)①;②;(2)的大小沒有變化;(3)BD的長為:.【分析】(1)①當α=0°時,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根據點D、E分別是邊BC、AC的中點,分別求出AE、BD的大小,即可求出的值是多少.②α=180°時,可得AB∥DE,然后根據,求出的值是多少即可.(2)首先判斷出∠ECA=∠DCB,再根據,判斷出△ECA∽△DCB,然后由相似三角形的對應邊成比例,求得答案.(3)分兩種情況分析,A、D、E三點所在直線與BC不相交和與BC相交,然后利用勾股定理分別求解即可求得答案.【詳解】解:(1)①當α=0°時,∵Rt△ABC中,∠B=90°,∴AC=,∵點D、E分別是邊BC、AC的中點,∴AE=AC=5,BD=BC=4,∴.②如圖1,當α=180°時,可得AB∥DE,∵,∴.故答案為:①;②.(2)如圖2,當0°≤α<360°時,的大小沒有變化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如圖3,連接BD,∵AC=10,CD=4,CD⊥AD,∴AD=,∵點D、E分別是邊BC、AC的中點,∴DE=AB=3,∴AE=AD+DE=,由(2),可得:,∴BD=;②如圖4,連接BD,∵AC=10,CD=4,CD⊥AD,∴AD=,∵點D、E分別是邊BC、AC的中點,∴DE=AB=3,∴AE=AD-DE=,由(2),可得:,∴BD=AE=.綜上所述,BD的長為:.【點睛】此題屬于旋轉的綜合題.考查了、旋轉的性質、相似三角形的判定與性質以及勾股定理等知識.注意掌握分類討論思想的應用是解此題的關鍵.21、1.3m【分析】由三點共線,連接GE,根據ED⊥AB,EF∥AB,求出∠GEF=∠EDM=90°,利用銳角三角函數求出GE,根據直角三角形30°角所對的直角邊等于斜邊的一半求出DE,即可得到答案.【詳解】三點共線,連接GE,∵ED⊥AB,EF∥AB,∴∠GEF=∠EDM=90°,在Rt△GEF中,∠GFE=62°,,∴m,在Rt△DEM中,∠EMD=30°,EM=1m,∴ED=0.5m,∴h=GE+ED=0.75+0.5m,答:此刻運動員頭部到斜坡的高度約為1.3m.【點睛】此題考查平行線的性質,銳角三角函數的實際應用,根據題意構建直角三角形是解題的關鍵.22、(1);(2)6,,2,【分析】(1)矩形的寬=矩形面積÷矩形的長,設出關系式,由于(1,4)滿足,故可求得k的值;

(2)根據(1)中所求的式子作答.【詳解】解(1)設,由于在此函數解析式上,那么.∴(2)128642【點睛】本題考查了列函數關系式表式實際問題,解答該類問題的關鍵是確定兩個變量之間的函數關系,然后利用待定系數法求出它們的關系式.在此函數上的點一定適合這個函數解析式.23、(1),頂點坐標為;(2)8;(3)①;②.【分析】(1)將點C代入表達式即可求出解析式,將表達式轉換為頂點式即可寫出頂點坐標;(2)根據題目分析可知,當點P位于拋物線頂點時,△ABP面積最大,根據解析式求出A、B坐標,從而得到AB長,再利用三角形面積公式計算面積即可;(3)①分三種情況:0<m≤1、1<m≤2以及m>2時,分別進行計算即可;②將h=9代入①中的表達式分別計算判斷即可.【詳解】解:(1)將點代入,得,解得,∴,∵,∴拋物線的頂點坐標為;(2)令,解得或,∴,,∴,當點與拋物線頂點重合時,△ABP的面積最大,此時;(3)①∵點C(0,-3)關于對稱軸x=1對稱的點的坐標為(2,-3),P(m,),∴當時,,當時,,當時,,綜上所述,;②當h=9時,若,此時方程無解,若,解得m=4或m=-2(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論