新疆塔城地區(qū)沙灣一中2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第1頁
新疆塔城地區(qū)沙灣一中2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第2頁
新疆塔城地區(qū)沙灣一中2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第3頁
新疆塔城地區(qū)沙灣一中2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第4頁
新疆塔城地區(qū)沙灣一中2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

新疆塔城地區(qū)沙灣一中2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲、乙、丙、丁、戊共5名同學(xué)進行勞動技術(shù)比賽,決出第1名到第5名的名次.甲和乙去詢問成績,回答者對甲說:“很遺憾,你和乙都沒有得到冠軍.”對乙說:“你當(dāng)然不會是最差的.”從這兩個回答分析,5人的名次排列方式共有()種A.54 B.72C.96 D.1202.已知雙曲線C1的一條漸近線方程為y=kx,離心率為e1,雙曲線C2的一條漸近線方程為y=x,離心率為e2,且雙曲線C1、C2在第一象限交于點(1,1),則=()A.|k| B.C.1 D.23.雙曲線的兩個焦點為,,雙曲線上一點到的距離為8,則點到的距離為()A.2或12 B.2或18C.18 D.24.某中學(xué)舉行黨史學(xué)習(xí)教育知識競賽,甲隊有、、、、、共名選手其中名男生名女生,按比賽規(guī)則,比賽時現(xiàn)場從中隨機抽出名選手答題,則至少有名女同學(xué)被選中的概率是()A. B.C. D.5.已知隨機變量服從正態(tài)分布,且,則()A.0.1 B.0.2C.0.3 D.0.46.?dāng)?shù)列的一個通項公式為()A. B.C. D.7.雙曲線的離心率是,則雙曲線的漸近線方程是()A. B.C. D.8.過點且垂直于的直線方程為()A. B.C. D.9.已知橢圓經(jīng)過點,當(dāng)該橢圓的四個頂點構(gòu)成的四邊形的周長最小時,其標(biāo)準(zhǔn)方程為()A. B.C. D.10.設(shè)雙曲線:的左、右焦點分別為、,P為C上一點,且,,則雙曲線的漸近線方程為()A. B.C. D.11.在等差數(shù)列中,若,且前n項和有最大值,則使得的最大值n為()A.15 B.16C.17. D.1812.設(shè)等比數(shù)列的前項和為,若,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.阿波羅尼斯與阿基米德、歐幾里得被稱為亞歷山大時期的數(shù)學(xué)三巨匠.“阿波羅尼斯圓”是他的代表成果之一:平面上動點P到兩定點A,B的距離之比滿足(且,t為常數(shù)),則點的軌跡為圓.已知在平面直角坐標(biāo)系中,,,動點P滿足,則P點的軌跡為圓,該圓方程為_________;過點的直線交圓于兩點,且,則_________14.已知函數(shù),數(shù)列是正項等比數(shù)列,且,則__________15.已知直線與垂直,則m的值為______16.設(shè)數(shù)列滿足,則an=________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面為的中點(1)求證:平面;(2)若,求平面與平面的夾角大小18.(12分)如圖,在空間直角坐標(biāo)系中有長方體,且,,點E在棱AB上移動.(1)證明:;(2)當(dāng)E為AB的中點時,求直線AC與平面所成角的正弦值.19.(12分)已知橢圓,過焦點且垂直于長軸的弦長為1,且焦點與短軸兩端點構(gòu)成等邊三角形.(1)求橢圓的方程;(2)過點的直線交橢圓于,兩點,交直線于點,且,.求證:為定值,并計算出該定值.20.(12分).在直角坐標(biāo)系中,點,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線與曲線相交于A,B兩點(1)求曲線的直角坐標(biāo)方程和直線的普通方程;(2)若,求值21.(12分)如圖,在三棱錐中,是邊長為2的等邊三角形,,O是BC的中點,(1)證明:平面平面BCD;(2)若三棱錐的體積為,E是棱AC上的一點,當(dāng)時,二面角E-BD-C大小為60°,求t的值22.(10分)某學(xué)校一航模小組進行飛機模型飛行高度實驗,飛機模型在第一分鐘時間內(nèi)上升了米高度.若通過動力控制系統(tǒng),可使飛機模型在以后的每一分鐘上升的高度都是它在前一分鐘上升高度的(1)在此動力控制系統(tǒng)下,該飛機模型在第三分鐘內(nèi)上升的高度是多少米?(2)這個飛機模型上升的最大高度能超過米嗎?如果能,求出從第幾分鐘開始高度超過米;如果不能,請說明理由

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題意,分2種情況討論:①、甲是最后一名,則乙可以為第二、三、四名,剩下的三人安排在其他三個名次,②、甲不是最后一名,甲乙需要排在第二、三、四名,剩下的三人安排在其他三個名次,由加法原理計算可得答案【詳解】根據(jù)題意,甲乙都沒有得到冠軍,而乙不是最后一名,分2種情況討論:①甲是最后一名,則乙可以為第二、三、四名,即乙有3種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;②甲不是最后一名,甲乙需要排在第二、三、四名,有種情況,剩下的三人安排在其他三個名次,有種情況,此時有種名次排列情況;則一共有種不同的名次情況,故選:A2、C【解析】根據(jù)漸近線方程設(shè)出雙曲線方程,再由過點,可知雙曲線方程,從而可求離心率.【詳解】由題,設(shè)雙曲線的方程為,又因為其過,且可知,不妨設(shè),代入,得,所以雙曲線的方程為,所以,同理可得雙曲線的方程為,所以可得,所以,當(dāng)時,結(jié)論依然成立.故選:C3、C【解析】利用雙曲線的定義求.【詳解】解:由雙曲線定義可知:解得或(舍)∴點到的距離為18,故選:C.4、D【解析】現(xiàn)場選名選手,共種情況,設(shè),,,四位同學(xué)為男同學(xué)則沒有女同學(xué)被選中的情況,共有6種,利用對立事件進行求解,即可得到答案;【詳解】現(xiàn)場選名選手,基本事件有:,,,,,,,,,,,,,,共種情況,不妨設(shè),,,四位同學(xué)為男同學(xué)則沒有女同學(xué)被選中的情況是:,,,,,共種,則至少有一名女同學(xué)被選中的概率為.故選:.5、A【解析】利用正態(tài)分布的對稱性和概率的性質(zhì)即可【詳解】由,且則有:根據(jù)正態(tài)分布的對稱性可知:故選:A6、A【解析】根據(jù)規(guī)律,總結(jié)通項公式,即可得答案.【詳解】根據(jù)規(guī)律可知數(shù)列的前三項為,所以該數(shù)列一個通項公式為故選:A7、B【解析】利用雙曲線的離心率,以及漸近線中,關(guān)系,結(jié)合找關(guān)系即可【詳解】解:,又因為在雙曲線中,,所以,故,所以雙曲線的漸近線方程為,故選:B8、B【解析】求出直線l的斜率,再借助垂直關(guān)系的條件即可求解作答.【詳解】直線的斜率為,而所求直線垂直于直線l,則所求直線斜率為,于是有:,即,所以所求直線方程為.故選:B9、A【解析】把點代入橢圓方程得,寫出橢圓頂點坐標(biāo),計算四邊形周長討論它取最小值時的條件即得解.【詳解】依題意得,橢圓的四個頂點為,順次連接這四個點所得四邊形為菱形,其周長為,,當(dāng)且僅當(dāng),即時取“=”,由得a2=12,b2=4,所求標(biāo)準(zhǔn)方程為.故選:A【點睛】給定兩個正數(shù)和(兩個正數(shù)倒數(shù)和)為定值,求這兩個正數(shù)倒數(shù)和(兩個正數(shù)和)的最值問題,可借助基本不等式中“1”的妙用解答.10、B【解析】根據(jù)雙曲線定義結(jié)合,求得,在中,利用余弦定理求得之間的關(guān)系,即可得出答案.【詳解】解:因為在雙曲線中,因為,所以,所以,在中,,,由余弦定理可得,即,所以,所以,所以,所以雙曲線的漸近線方程為.故選:B.11、A【解析】由題可得,則,可判斷,,即可得出結(jié)果.【詳解】前n項和有最大值,,,,,,,使得的最大值n為15.故選:A.【點睛】本題考查等差數(shù)列前n項和的有關(guān)判斷,解題的關(guān)鍵是得出.12、C【解析】利用等比數(shù)列前項和的性質(zhì),,,,成等比數(shù)列求解.【詳解】解:因為數(shù)列為等比數(shù)列,則,,成等比數(shù)列,設(shè),則,則,故,所以,得到,所以.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】設(shè),根據(jù)可得圓的方程,利用垂徑定理可求.【詳解】設(shè),則,整理得到,即.因為,故為的中點,過圓心作的垂線,垂足為,則為的中點,則,故,解得,故答案為:,.14、##9.5【解析】根據(jù)給定條件計算當(dāng)時,的值,再結(jié)合等比數(shù)列性質(zhì)計算作答.【詳解】函數(shù),當(dāng)時,,因數(shù)列是正項等比數(shù)列,且,則,,同理,令,又,則有,,所以.故答案為:15、0或-9##-9或0【解析】根據(jù)給定條件利用兩直線互相垂直的性質(zhì)列式計算即得.【詳解】因直線與垂直,則有,解得或,所以m的值為0或-9.故答案為:0或-916、【解析】先由題意得時,,再作差得,驗證時也滿足【詳解】①當(dāng)時,;當(dāng)時,②①②得,當(dāng)也成立.即故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)取中點,連結(jié),證得,利用線面平行的判定定理,即可求解;(2)以為原點,以方面為軸,以方向為軸,以方向為軸,建立坐標(biāo)系,利用平面和平面的法向量的夾角公式,即可求解【小問1詳解】取中點,連結(jié),由,,則,又由平面,平面,所以平面.【小問2詳解】以為原點,以方面為軸,以方向為軸,以方向為軸,建立坐標(biāo)系,可得,,,,,則,,設(shè)平面的一個法向量為,則,即,令,則又平面的法向量為;則,所以平面與平面所成的銳二面角為.18、(1)證明見解析(2)【解析】(1)設(shè),求出,,利用向量法能求出;(2)求出平面的法向量,利用向量法能求出直線與平面所成角的正弦值【小問1詳解】證明:設(shè),,,,;【小問2詳解】當(dāng)為的中點時,,,設(shè)平面的法向量,則,取,得,設(shè)直線與平面所成角為,則直線與平面所成角的正弦值為:19、(1)(2)證明見解析,定值為【解析】(1)由題意得,從而寫出橢圓的方程即可;(2)易知直線斜率存在,令,,,,,將直線的方程代入橢圓的方程,消去得到關(guān)于的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用向量的坐標(biāo)公式即可求得值,從而解決問題.【小問1詳解】(1)由條件得,所以方程為【小問2詳解】易知直線斜率存在,令,,,由,因為,所以,即-1-x1因為,所以,即-4-x1由①,由②將,代入上式,得20、(1)曲線的直角坐標(biāo)方程為,直線的普通方程為;(2).【解析】(1)根據(jù)極坐標(biāo)與直角坐標(biāo)互化公式,結(jié)合加法消元法進行求解即可;(2)利用直線參數(shù)方程的意義,結(jié)合一元二次方程根與系數(shù)關(guān)系進行求解即可.小問1詳解】由;;【小問2詳解】把直線的參數(shù)方程代入曲線的直角坐標(biāo)方程中,得,,因為在直線上,所以,或而,所以.21、(1)證明見解析(2)3【解析】(1)證得平面BCD,結(jié)合面面垂直判定定理即可得出結(jié)論;(2)建立空間直角坐標(biāo)系,利用空間向量求二面角的公式可得,進而解方程即可求出結(jié)果.【小問1詳解】因為,O是BC的中點,所以,又因為,且,平面BCD,平面BCD,所以平面BCD,因為平面ABC,所以平面平面BCD【小問2詳解】連接OD,又因為是邊長為2的等邊三角形,所以,由(1)知平面BCD,所以AO,BC,DO兩兩互相垂直以O(shè)為坐標(biāo)原點,OA,OB,OD所在直線分別為x軸,y軸,z軸建立如圖所示空間直角坐標(biāo)系設(shè),則O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),,因為A-BCD的體積為,所以,解得,即A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論