




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆四川省井研中學數學高一下期末統考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知變量滿足約束條件,則的最大值為()A.8 B.7 C.6 D.42.已知變量與正相關,且由觀測數據算得樣本平均數,,則由該觀測的數據算得的線性回歸方程可能是()A. B.C. D.3.演講比賽共有9位評委分別給出某選手的原始評分,評定該選手的成績時,從9個原始評分中去掉1個最高分、1個最低分,得到7個有效評分.7個有效評分與9個原始評分相比,不變的數字特征是A.中位數 B.平均數C.方差 D.極差4.設集合,則()A. B. C. D.5.已知,,且,,則的值為()A. B.1 C. D.6.若,則()A.- B. C. D.7.已知數列的前4項依次為,1,,,則該數列的一個通項公式可以是()A. B.C. D.8.平面與平面平行的充分條件可以是()A.內有無窮多條直線都與平行B.直線,,且直線a不在內,也不在內C.直線,直線,且,D.內的任何一條直線都與平行9.若直線xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.10.如圖是函數的部分圖象,則下列命題中,正確的命題序號是①函數的最小正周期為②函數的振幅為③函數的一條對稱軸方程為④函數的單調遞增區間是⑤函數的解析式為A.③⑤ B.③④ C.④⑤ D.①③二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角所對的邊分別為,下列命題正確的是_____________.①總存在某個內角,使得;②存在某鈍角,有;③若,則的最小角小于.12.(如下圖)在正方形中,為邊中點,若,則__________.13.已知向量,若,則_______14.如圖,在四面體A-BCD中,已知棱AC的長為,其余各棱長都為1,則二面角A-CD-B的平面角的余弦值為________.15.在中,,是邊上一點,且滿足,若,則_________.16.已知,,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,的夾角為120°,且||=2,||=3,設32,2.(Ⅰ)若⊥,求實數k的值;(Ⅱ)當k=0時,求與的夾角θ的大小.18.設函數.(1)當時,解關于的不等式;(2)若關于的不等式的解集為,求的值.19.已知函數.(1)求的最小正周期;(2)若,求當時自變量的取值集合.20.下表中的數據是一次階段性考試某班的數學、物理原始成績:用這44人的兩科成績制作如下散點圖:學號為22號的同學由于嚴重感冒導致物理考試發揮失常,學號為31號的同學因故未能參加物理學科的考試,為了使分析結果更客觀準確,老師將兩同學的成績(對應于圖中兩點)剔除后,用剩下的42個同學的數據作分析,計算得到下列統計指標:數學學科平均分為110.5,標準差為18.36,物理學科的平均分為74,標準差為11.18,數學成績與物理成績的相關系數為,回歸直線(如圖所示)的方程為.(1)若不剔除兩同學的數據,用全部44人的成績作回歸分析,設數學成績與物理成績的相關系數為,回歸直線為,試分析與的大小關系,并在圖中畫出回歸直線的大致位置;(2)如果同學參加了這次物理考試,估計同學的物理分數(精確到個位);(3)就這次考試而言,學號為16號的同學數學與物理哪個學科成績要好一些?(通常為了比較某個學生不同學科的成績水平,可按公式統一化成標準分再進行比較,其中為學科原始分,為學科平均分,為學科標準差).21.某高中為了選拔學生參加“全國高中數學聯賽”,先在本校進行初賽(滿分150分),隨機抽取100名學生的成績作為樣本,并根據他們的初賽成績得到如圖所示的頻率分布直方圖.(1)求頻率分布直方圖中a的值;(2)根據頻率分布直方圖,估計這次初賽成績的平均數、中位數、眾數.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】
先畫出滿足約束條件的平面區域,然后求出目標函數取最大值時對應的最優解點的坐標,代入目標函數即可求出答案.【題目詳解】滿足約束條件的平面區域如下圖所示:作直線把直線向上平移可得過點時最小當,時,取最大值1,故答案為1.【題目點撥】本題考查的知識點是簡單線性規劃,其中畫出滿足約束條件的平面區域,找出目標函數的最優解點的坐標是解答本題的關鍵.2、A【解題分析】試題分析:因為與正相關,排除選項C、D,又因為線性回歸方程恒過樣本點的中心,故排除選項B;故選A.考點:線性回歸直線.3、A【解題分析】
可不用動筆,直接得到答案,亦可采用特殊數據,特值法篩選答案.【題目詳解】設9位評委評分按從小到大排列為.則①原始中位數為,去掉最低分,最高分,后剩余,中位數仍為,A正確.②原始平均數,后來平均數平均數受極端值影響較大,與不一定相同,B不正確③由②易知,C不正確.④原極差,后來極差可能相等可能變小,D不正確.【題目點撥】本題旨在考查學生對中位數、平均數、方差、極差本質的理解.4、B【解題分析】
補集:【題目詳解】因為,所以,選B.【題目點撥】本題主要考查了集合的運算,需要掌握交集、并集、補集的運算。屬于基礎題。5、A【解題分析】
由已知求出,的值,再由,展開兩角差的余弦求解,即可得答案.【題目詳解】由,,且,,,,∴,∴,.故選:A.【題目點撥】本題考查兩角和與差的余弦、倍角公式,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意“拆角配角”思想的運用.6、B【解題分析】
首先觀察兩個角之間的關系:,因此兩邊同時取余弦值即可.【題目詳解】因為所以所以,選B.【題目點撥】本題主要考查了三角函的誘導公式.解決此題的關鍵在于拼湊出,再利用誘導公式(奇變偶不變、符號看象限)即可.7、A【解題分析】
根據各選擇項求出數列的首項,第二項,用排除法確定.【題目詳解】可用排除法,由數列項的正負可排除B,D,再看項的絕對值,在C中不合題意,排除C,只有A.可選.故選:A.【題目點撥】本題考查數列的通項公式,已知數列的前幾項,選擇一個通項公式,比較方便,可以利用通項公式求出數列的前幾項,把不合的排除即得.8、D【解題分析】
利用平面與平面平行的判定定理一一進行判斷,可得正確答案.【題目詳解】解:A選項,內有無窮多條直線都與平行,并不能保證平面內有兩條相交直線與平面平行,這無窮多條直線可以是一組平行線,故A錯誤;B選項,直線,,且直線a不在內,也不在內,直線a可以是平行平面與平面的相交直線,故不能保證平面與平面平行,故B錯誤;C選項,直線,直線,且,,當直線,同樣不能保證平面與平面平行,故C錯誤;D選項,內的任何一條直線都與平行,則內至少有兩條相交直線與平面平行,故平面與平面平行;故選:D.【題目點撥】本題主要考查平面與平面平行的判斷,解題時要認真審題,熟練掌握面與平面平行的判定定理,注意空間思維能力的培養.9、C【解題分析】
將1,2代入直線方程得到1a+2【題目詳解】將1,2代入直線方程得到1a+b=(a+b)(當a=2故答案選C【題目點撥】本題考查了直線方程,均值不等式,1的代換是解題的關鍵.10、A【解題分析】
根據圖象求出函數解析式,根據三角函數型函數的性質逐一判定.【題目詳解】由圖象可知,,最大值為,,因為圖象過點,,由,即可判定錯,正確,由得對稱軸方程為,,故正確;由,,,函數的單調遞增區間是,故錯;故選:A【題目點撥】本題主要考查了根據圖象求正弦型函數函數的解析式,及正弦型函數的性質,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、①③【解題分析】
①中,根據直角三角形、銳角三角形和鈍角三角形分類討論,得出必要一個角在內,即可判定;②中,利用兩角和的正切公式,化簡得到,根據鈍角三角形,即可判定;③中,利用向量的運算,得到,由于不共線,得到,再由余弦定理,即可判定.【題目詳解】由題意,對于①中,在中,當,則,若為直角三角形,則必有一個角在內;若為銳角三角形,則必有一個內角小于等于;若為鈍角三角形,也必有一個角小于內,所以總存在某個內角,使得,所以是正確的;對于②中,在中,由,可得,由為鈍角三角形,所以,所以,所以不正確;對于③中,若,即,即,由于不共線,所以,即,由余弦定理可得,所以最小角小于,所以是正確的.綜上可得,命題正確的是①③.故答案為:①③.【題目點撥】本題以真假命題為載體,考查了正弦、余弦定理的應用,以及向量的運算及應用,其中解答中熟練應用解三角形的知識和向量的運算進行化簡是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.12、【解題分析】∵,根據向量加法的三角形法則,得到∴λ=1,.則λ+μ=.故答案為.點睛:此題考查的是向量的基本定理及其分解,由條件知道,題目中要用和,來表示未知向量,故題目中要通過正方形的邊長和它特殊的直角,來做基底,表示出要求的向量,根據平面向量基本定理,系數具有惟一性,得到結果.13、【解題分析】
由題意利用兩個向量垂直的性質,兩個向量的數量積公式,求得的值.【題目詳解】因為向量,若,∴,則.故答案為:1.【題目點撥】本題主要考查兩個向量垂直的坐標運算,屬于基礎題.14、【解題分析】如圖,取中點,中點,連接,由題可知,邊長均為1,則,中,,則,得,所以二面角的平面角即,在中,,則,所以.點睛:本題采用幾何法去找二面角,再進行求解.利用二面角的定義:公共邊上任取一點,在兩個面內分別作公共邊的垂線,兩垂線的夾角就是二面角的平面角,找到二面角的平面角,再求出對應三角形的三邊,利用余弦定理求解(本題中剛好為直角三角形).15、【解題分析】
記,則,則可求出,設,,得,,故結合余弦定理可得,解得的值,即可求,進而求的值.【題目詳解】根據題意,不妨設,,則,因,所以,設,由,得,又,所以,故由余弦定理可得,即,整理得:,即,所以,所以,所以,故答案為:.【題目點撥】本題主要考查了余弦定理在解三角形中的綜合應用以及同角三角函數的基本關系式,屬于中檔題.16、【解題分析】
利用同角三角函數的基本關系求得的值,利用二倍角的正切公式,求得,再利用兩角和的正切公式,求得的值,再結合的范圍,求得的值.【題目詳解】,,,,,,故答案:.【題目點撥】本題主要考查同角三角函數的基本關系,兩角和的正切公式,二倍角的正切公式,根據三角函數的值求角,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解題分析】
(Ⅰ)利用⊥,結合向量的數量積的運算公式,得到關于的方程,即可求解;(Ⅱ)當時,利用向量的數量積的運算公式,以及向量的夾角公式,即可求解.【題目詳解】(Ⅰ)由題意,向量,的夾角為120°,且||=2,||=3,所以,,,又由.若⊥,可得,解得k.(Ⅱ)當k=0時,,則.因為,由向量的夾角公式,可得,又因為0≤θ≤π,∴,所以與的夾角θ的大小為.【題目點撥】本題主要考查了向量的數量積的運算,以及向量的夾角公式的應用,其中解答中熟記向量的運算公式,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.18、(1)(2)【解題分析】
(1)不等式為,根據一元二次不等式的解法直接求得結果;(2)根據一元二次不等式與一元二次方程的關系可知的兩根為:和,且,利用韋達定理構造方程可求得結果.【題目詳解】(1)當時,由得:,解得:或不等式的解集為:(2)由不等式得:解集為方程的兩根為:和,且,即,解得:【題目點撥】本題考查一元二次不等式的求解、一元二次不等式解集和一元二次方程根的關系;關鍵是能夠根據不等式解集得到方程的根,利用韋達定理求得結果.19、(1);(2)或【解題分析】
(1)由輔助角公式可得,再求周期即可;(2)由求出,再解方程即可.【題目詳解】解:(1),則的最小正周期為.(2)因為,所以,即,解得.因為,所以.因為,所以,即,則或,解得或.故當時,自變量的取值集合為或.【題目點撥】本題考查了三角恒等變換,重點考查了解三角方程,屬中檔題.20、(1),理由見解析(2)81(3)【解題分析】
(1)不剔除兩同學的數據,44個數據會使回歸效果變差,從而得到,描出回歸直線即可;(2)將x=125代入回歸直線方程,即可得到答案;(3)利用題目給出的標準分計算公式進行計算即可得到結論.【題目詳解】(1),說明理由可以是:①離群點A,B會降低變量間的線性關聯程度;②44個數據點與回歸直線的總偏差更大,回歸效果更差,所以相關系數更小;③42個數據點與回歸直線的總偏差更小,回歸效果更好,所以相關系數更大;④42個數據點更加貼近回歸直線;⑤44個數據點與回歸直線更離散,或其他言之有理的理由均可.要點:直線斜率須大于0且小于的斜率,具體為止稍有出入沒關系,無需說明理由.(2)令,代入得所以,估計同學的物理分數大約為分.(3)由表中知同學的數學原始分為122,物理原始分為82,數學標準分為物理標準分為,故同學物理成績比數學成績要好一些.【題目點撥】本題考查散點圖和線性回歸方程的簡單應用,考查數據處理與數學應用能力.21、(1)(2)平均數、中位數、眾數
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024秋七年級語文上冊 第二單元 7《散文詩二首》荷葉 母親教學設計 新人教版
- 3我很誠實(教學設計)-統編版道德與法治三年級下冊
- 《第4節 組裝電腦了解電腦硬件的主要部件》教學設計 -2023-2024學年北師大版初中信息技術七年級上冊
- 15《我們不亂扔》(教學設計)2024-2025學年統編版(2024)道德與法治一年級上冊
- 5《我們的校園》第一課時(教學設計)-部編版道德與法治一年級上冊
- 認知發展差異的教育意義
- 6 花兒草兒真美麗 教學設計-2023-2024學年道德與法治一年級下冊統編版
- 2024秋四年級英語上冊 Unit 2 My schoolbag第6課時(Read and write Story time)教學設計 人教PEP
- 2024-2025學年新教材高中語文 第3單元 探索與發現 群文閱讀(三)學習科技 開拓創新教學設計 新人教版必修下冊
- Unit 5 I Have a Bag (Period 3) (教學設計)-2024-2025學年陜旅版(三起)(2024)英語三年級上冊
- 《醫療廢物的處理》課件
- 繩子莫泊桑課件
- 教育培訓合作分成協議書
- 2024年國家危險化學品經營單位安全生產考試題庫(含答案)
- 防性侵安全教育課件
- 改革開放課件教案
- 自行車采購合同模板
- 《美的集團股權激勵實施過程及實施效果分析案例(論文)》14000字
- 2024年四川省南充市中考生物試卷真題(含官方答案及解析)
- JT-T-524-2019公路工程水泥混凝土用纖維
- DL-T5501-2015凍土地區架空輸電線路基礎設計技術規程
評論
0/150
提交評論