云南省宜良第一中學(xué)2023年高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第1頁
云南省宜良第一中學(xué)2023年高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第2頁
云南省宜良第一中學(xué)2023年高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第3頁
云南省宜良第一中學(xué)2023年高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第4頁
云南省宜良第一中學(xué)2023年高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)是()A. B. C. D.2.設(shè)等比數(shù)列的前項和為,若,,則()A.63 B.62 C.61 D.603.函數(shù)的定義域為()A. B. C. D.4.已知,,,則它們的大小關(guān)系是()A. B. C. D.5.某小組有3名男生和2名女生,從中任選2名學(xué)生參加演講比賽,那么下列互斥但不對立的兩個事件是()A.“至少1名男生”與“全是女生”B.“至少1名男生”與“至少有1名是女生”C.“至少1名男生”與“全是男生”D.“恰好有1名男生”與“恰好2名女生”6.已知圓的圓心與點關(guān)于直線對稱,直線與圓相交于,兩點,且,則圓的半徑長為()A. B. C.3 D.7.已知某幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.8.已知滿足,則()A.1 B.3 C.5 D.79.的內(nèi)角,,的對邊分別為,,.已知,則()A. B. C. D.10.已知水平放置的是按“斜二測畫法”得到如圖所示的直觀圖,其中,,那么原中的大小是().A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列,其中,若數(shù)列中,恒成立,則實數(shù)的取值范圍是_______.12.設(shè)直線與圓C:x2+y2-2ay-2=0相交于A,B兩點,若,則圓C的面積為________13.等比數(shù)列中,,則公比____________.14.若滿足約束條件則的最大值為__________.15.已知函數(shù)f(n)=n2cos(nπ),且an=f(n)+f(n+1),則a1+a2+a3+…+a100=_______16.若一個圓錐的高和底面直徑相等且它的體積為,則此圓錐的側(cè)面積為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖已知平面,,,,,,點,分別為,的中點.(1)求證://平面;(2)求直線與平面所成角的大小.18.記Sn為等比數(shù)列的前n項和,已知S2=2,S3=-6.(1)求的通項公式;(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列.19.己知向量,,設(shè)函數(shù),且的圖象過點和點.(1)當(dāng)時,求函數(shù)的最大值和最小值及相應(yīng)的的值;(2)將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)的圖象,若在有兩個不同的解,求實數(shù)的取值范圍.20.四棱柱中,底面為正方形,,為中點,且.(1)證明;(2)求點到平面的距離.21.在中,角所對的邊分別為,且.(1)求邊長;(2)若的面積為,求邊長.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由三視圖可知,該幾何體是一個棱長為的正方體挖去一個圓錐的組合體,正方體體積為,圓錐體積為幾何體的體積為,故選B.【方法點睛】本題利用空間幾何體的三視圖重點考查學(xué)生的空間想象能力和抽象思維能力,屬于難題.三視圖問題是考查學(xué)生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關(guān)鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響.2、A【解析】

由等比數(shù)列的性質(zhì)可得S2,S4-S2,S6-S4成等比數(shù)列,代入數(shù)據(jù)計算可得.【詳解】因為,,成等比數(shù)列,即3,12,成等比數(shù)列,所以,解得.【點睛】本題考查等比數(shù)列的性質(zhì)與前項和的計算,考查運算求解能力.3、A【解析】

根據(jù)對數(shù)函數(shù)的定義域直接求解即可.【詳解】由題知函數(shù),所以,所以函數(shù)的定義域是.故選:A.【點睛】本題考查了對數(shù)函數(shù)的定義域的求解,屬于基礎(chǔ)題.4、C【解析】因為,,故選C.5、D【解析】

從3名男生和2名女生中任選2名學(xué)生的所有結(jié)果有“2名男生”、“2名女生”、“1名男生和1名女生”.選項A中的兩個事件為對立事件,故不正確;選項B中的兩個事件不是互斥事件,故不正確;選項C中的兩個事件不是互斥事件,故不正確;選項D中的兩個事件為互斥但不對立事件,故正確.選D.6、A【解析】

根據(jù)題干畫出簡圖,在直角中,通過弦心距和半徑關(guān)系通過勾股定理求解即可?!驹斀狻繄A的圓心與點關(guān)于直線對稱,所以,,設(shè)圓的半徑為,如下圖,圓心到直線的距離為:,,【點睛】直線和圓相交問題一般兩種方法:第一,通過弦心距d和半徑r的關(guān)系,通過勾股定理求解即可。第二,直線方程和圓的方程聯(lián)立,則。兩種思路,此題屬于中檔題型。7、B【解析】

由三視圖判斷該幾何體是有三條棱兩兩垂直是三棱錐,結(jié)合三視圖的數(shù)據(jù)可得結(jié)果.【詳解】由三視圖可得該幾何體是如圖所示的三棱錐,其中AB,BC,BP兩兩垂直,且,則和的面積都是1,的面積為2,在中,,則的面積為,所以該幾何體的表面積為,故選:B.【點睛】三視圖問題是考查學(xué)生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關(guān)鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響,對簡單組合體三視圖問題,先看俯視圖確定底面的形狀,根據(jù)正視圖和側(cè)視圖,確定組合體的形狀.8、B【解析】

已知兩個邊和一個角,由余弦定理,可得。【詳解】由題得,,,代入,化簡得,解得(舍)或.故選:B【點睛】本題考查用余弦定理求三角形的邊,是基礎(chǔ)題。9、A【解析】

由正弦定理,整理得到,即可求解,得到答案.【詳解】在中,因為,由正弦定理可得,因為,則,所以,即,又因為,則,故選A.【點睛】本題主要考查了正弦定理的應(yīng)用,其中解答中熟練應(yīng)用正弦定理的邊角互化,以及特殊角的三角函數(shù)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.10、C【解析】

根據(jù)斜二測畫法還原在直角坐標系的圖形,進而分析出的形狀,可得結(jié)論.【詳解】如圖:根據(jù)斜二測畫法可得:,故原是一個等邊三角形故選【點睛】本題是一道判定三角形形狀的題目,主要考查了平面圖形的直觀圖,考查了數(shù)形結(jié)合的思想二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由函數(shù)(數(shù)列)單調(diào)性確定的項,哪些項取,哪些項取,再由是最小項,得不等關(guān)系.【詳解】由題意數(shù)列是遞增數(shù)列,數(shù)列是遞減數(shù)列,存在,使得時,,當(dāng)時,,∵數(shù)列中,是唯一的最小項,∴或,或,或,綜上.∴的取值范圍是.故答案為:.【點睛】本題考查數(shù)列的單調(diào)性與最值.解題時楞借助函數(shù)的單調(diào)性求解.但數(shù)列是特殊的函數(shù),它的自變量只能取正整數(shù),因此討論時與連續(xù)函數(shù)有一些區(qū)別.12、【解析】因為圓心坐標與半徑分別為,所以圓心到直線的距離,則,解之得,所以圓的面積,應(yīng)填答案.13、【解析】

根據(jù)題意得到:,解方程即可.【詳解】由題知:,解得:.故答案為:【點睛】本題主要考查等比數(shù)列的性質(zhì),熟練掌握等比數(shù)列的性質(zhì)為解題的關(guān)鍵,屬于簡單題.14、【解析】

作出可行域,根據(jù)目標函數(shù)的幾何意義可知當(dāng)時,.【詳解】不等式組表示的可行域是以為頂點的三角形區(qū)域,如下圖所示,目標函數(shù)的最大值必在頂點處取得,易知當(dāng)時,.【點睛】線性規(guī)劃問題是高考中??伎键c,主要以選擇及填空的形式出現(xiàn),基本題型為給出約束條件求目標函數(shù)的最值,主要結(jié)合方式有:截距型、斜率型、距離型等.15、-1【解析】

分n為偶數(shù)和奇數(shù)求得數(shù)列的奇數(shù)項和偶數(shù)項均為等差數(shù)列,然后利用分組求和得答案.【詳解】若n為偶數(shù),則an=f(n)+f(n+1)=n2﹣(n+1)2=﹣(2n+1),偶數(shù)項為首項為a2=﹣5,公差為﹣4的等差數(shù)列;若n為奇數(shù),則an=f(n)+f(n+1)=﹣n2+(n+1)2=2n+1,奇數(shù)項為首項為a1=3,公差為4的等差數(shù)列.∴a1+a2+a3+…+a1=(a1+a3+…+a99)+(a2+a4+…+a1)1.故答案為:1.【點睛】本題考查數(shù)列遞推式,考查了等差關(guān)系的確定,訓(xùn)練了等差數(shù)列前n項和的求法,是中檔題.16、【解析】

先由圓錐的體積公式求出圓錐的底面半徑,再結(jié)合圓錐的側(cè)面積公式求解即可.【詳解】解:設(shè)圓錐的底面半徑為,則圓錐的高為,母線長為,由圓錐的體積為,則,即,則此圓錐的側(cè)面積為.故答案為:.【點睛】本題考查了圓錐的體積公式,重點考查了圓錐的側(cè)面積公式,屬基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】

(1)要證線面平行即證線線平行,本題連接A1B,(2)取中點,連接證明平面,再求出,得到.【詳解】(1)如圖,連接,在中,因為和分別是和的中點,所以.又因為平面,所以平面;取中點和中點,連接,,.因為和分別為和,所以,,故且,所以,且.又因為平面,所以平面,從而為直線與平面所成的角.在中,可得,所以.因為,,所以,,,所以,,又由,有.在中,可得;在中,,因此.所以直線與平面所成角為.【點睛】求線面角一般有兩個方法:幾何法做出線上一點到平面的高,求出高;或利用等體積法求高向量法.18、(1);(2)見解析.【解析】試題分析:(1)由等比數(shù)列通項公式解得,即可求解;(2)利用等差中項證明Sn+1,Sn,Sn+2成等差數(shù)列.試題解析:(1)設(shè)的公比為.由題設(shè)可得,解得,.故的通項公式為.(2)由(1)可得.由于,故,,成等差數(shù)列.點睛:等差、等比數(shù)列的性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),是解決等差、等比數(shù)列問題既快捷又方便的工具,應(yīng)有意識地去應(yīng)用.但在應(yīng)用性質(zhì)時要注意性質(zhì)的前提條件,有時需要進行適當(dāng)變形.在解決等差、等比數(shù)列的運算問題時,經(jīng)常采用“巧用性質(zhì)、整體考慮、減少運算量”的方法.19、(1)最大值為2,此時;最小值為-1,此時.(2)【解析】

(1)根據(jù)向量數(shù)量積坐標公式,列出函數(shù),再根據(jù)函數(shù)圖像過定點,求解函數(shù)解析式,當(dāng)時,解出的范圍,根據(jù)三角函數(shù)性質(zhì),可求最值;(2)根據(jù)三角函數(shù)平移伸縮變換,寫出解析式,畫出在上的圖象,根據(jù)圖像即可求解參數(shù)取值范圍.【詳解】解:(1)由題意知.根據(jù)的圖象過點和,得到,解得,.當(dāng)時,,,最大值為2,此時,最小值為-1,此時.(2)將函數(shù)的圖象向右平移一個單位得,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得令,,如圖當(dāng)時,在有兩個不同的解∴,即.【點睛】本題考查(1)三角函數(shù)最值問題(2)三角函數(shù)的平移伸縮變換,考查計算能力,考查轉(zhuǎn)化與化歸思想,考查數(shù)形結(jié)合思想,屬于中等題型.20、(1)見解析;(2).【解析】試題分析:(1)證明線線垂直,一般利用線面垂直性質(zhì)定理,即利用線面垂直進行證明,而證明線面垂直,則利用線面垂直判定定理,即從已知的線線垂直出發(fā)給予證明,本題利用平幾知識,如等邊三角形性質(zhì)、正方形性質(zhì)得線線垂直,(2)求點到直線距離,一般方法利用等體積法轉(zhuǎn)化為求高.試題解析:(1)等邊中,為中點,又,且在正方形中,(2)中,,由(1)知,等體積法可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論