人教版小學五年級數學下冊教案_第1頁
人教版小學五年級數學下冊教案_第2頁
人教版小學五年級數學下冊教案_第3頁
人教版小學五年級數學下冊教案_第4頁
人教版小學五年級數學下冊教案_第5頁
已閱讀5頁,還剩143頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

目錄 目錄 義務教育課程標準實驗教科書數學五年級下冊說明 .1 一、教學內容和教學目標 .1 二、教材的編寫特點 .4 三、教學中需要準備的教具和學具 .14 四、課時安排 .15 各單元的教材說明和教學建議 .17 一、圖形的變換 .17 (一)教學目標 .17 (二)教材說明和教學建議 .17 (三)具體內容的說明和教學建議 .19 二、因數與倍數 .28 (一)教學目標 .28 (二)教材說明和教學建議 .28 (三)各小節的教材說明和教學建議 .31 1. 因數和倍數 .31 2. 2、 5、 3 的倍數的特征 .36 3. 質數和合數 .41 (四)參考資料 .44 1. 2、 5、 3 的倍數的特征 .44 2. 質數表 .45 3. 篩法 .46 三、長方體和正方體 .47 (一)教學目標 .47 (二) 教材說明和教學建議 .47 (三)各小節的教材說明和教學建議 .50 1. 長方體和正方體的認識 .50 2. 長方體和正方體的表面積 .56 3. 長方體和正方體的體積 .61 (四)參考教案 .78 課題一:長方體的認識(片斷) .78 課題二:體積和體積單位 .81 綜合應用:粉刷圍墻 .86 四、分數的意義和性質 .89 (一)教學目標 .89 (二)教材說明和教學建議 .89 (三)各小節的教材說明和教學建議 .95 1. 分數的意義 .95 2. 真分數和假分數 .106 3. 分數的基本性質 .114 4. 約分 .120 5. 通分 .130 6. 分數和小數的互化 .144 (四)參考教案 .152 課題一:分數的意義 .152 課題二:最小公倍數 .155 (五)參考資料 .159 1. 輾轉相除法 .159 2. 利用最大公因數求最小公倍數 .160 3. 數的擴充 .161 4. 無限循環小數化成分數 .162 五、分數的加法和減法 .164 (一)教學目標 .164 (二)教材說明和教學建議 .164 (三)各小節的教材說明和教學建議 .169 1. 同分母分數加、減法 .169 2. 異分母分數加、減法 .178 3. 分數加減混合運算 .185 (四)參考教案 .192 課題:異分母分數加減法 .192 六、統計 .198 (一)教學目標 .198 (二)教材說明和教學建議 .198 (三)具體內容的說明和教學建議 .200 綜合應用:打電話 .206 七、數學廣角 .212 (一)教學目標 .212 (二)教材說明和教學建議 .212 (三)具體內容的說明和教學建議 .214 八、總復習 .219 (一)教學目標 .219 (二 )教材說明 .219 (三)教學建議 .221 五年級下冊說明 義務教育課程標準實驗教科書數學五年級下冊說明 人民教育出版社小學數學室、課程教材研究所小學數學課程教材研究開發中心編寫的義務教育課程標準實驗教科書數學五年級下冊,是以全日制義務教育數學課程標準(實驗稿)(以下簡稱標準)的基本理念和所規定的教學內容為依據,在總結現行九年義務教育小學數學教材研究和使用經驗的基礎上編寫的。編者一方面努力體現新的教材觀、教學觀和學習觀 ,同時注意所采用措施的可行性,使實驗教材具有創新、實用、開放的特點。另一方面注意處理好繼承與發展的關系,既注意反映數學教育改革的新理念,又注意保持我國數學教育的優良傳統,使教材具有基礎性、豐富性和發展性。 下面就這冊教材中幾個主要問題作一簡要說明,以供教師參考。 一、教學內容和教學目標 這一冊教材包括下面一些內容:圖形的變換,因數與倍數,長方體和正方體,分數的意義和性質,分數的加法和減法,統計,數學廣角和綜合應用等。 因數與倍數,長方體和正方體,分數的意義和性質,分數的加法和 減法,統計等是本冊教材的重點教學內容。 在數與代數方面,這一冊教材安排了因數與倍數、分數的意義和性質,分數的加法和減法。因數與倍數,在前面學習整數及其四則運算的基礎上教學初等數論的一些基礎知識,包括因數和倍數的意義, 2、 5、 3 的倍數的特征,質數和合數。教材在三年級上冊分數的初步認識的基礎上教學分數的意義和性質以及分數的加法、減法,結合約分教學最大公因數,結合通分教學最小公倍數。 在空間與圖形方面,這一冊教材安排了圖形的變換、長方體和正方體兩個單元。在已有知識和經驗的基礎上,通過豐富的現實的數 學活動,讓學生獲得探究學習的經歷,認識圖形的軸對稱和旋轉變換;探索并體會長方體和正方體的特征、圖形之間的關系,及圖形之間的轉化,掌握長方體、正方體的體積及表面積公式,探索某些實物體積的測量方法,促進學生空間觀念的進一步發展。 在統計方面,本冊教材讓學生學習有關眾數和復式折線統計圖的知識。在學習平均數和中位數的基礎上,本冊教材教學眾數。平均數、中位數和眾數都是反映一組數據集中趨勢的特征數。平均數作為一組數據的代表,比較穩定、可靠,但易受極端數據的影響;中位數作為一組數據的代表,可靠性比較差,但不受極端 數據的影響;眾數作為一組數據的代表,也不受極端數據的影響。當一組數據中個別數據變動較大時,適宜選擇眾數或中位數來表示這組數據的集中趨勢。 在用數學解決問題方面,教材一方面結合分數的加法和減法、長方體和正方體兩個單元,教學用所學的知識解決生活中的簡單問題;另一方面,安排了 “ 數學廣角 ”的教學內容,引導學生通過觀察、猜測、實驗、推理等活動向學生滲透優化的數學思想方法,體會解決問題策略的多樣性及運用優化的方法解決問題的有效性,感受數學的魅力。 本冊教材根據學生所學習的數學知識和生活經驗,安排了兩個數 學綜合應用活動,讓學生通過小組合作的探究活動或有現實背景的活動,運用所學知識解決問題,體會探索的樂趣和數學的實際應用,感受用數學的愉悅,培養學生的數學意識和實踐能力。 這一冊教材的教學目標是,使學生: 1. 理解分數的意義和基本性質,會比較分數的大小,會把假分數化成帶分數或整數,會進行整數、小數的互化,能夠比較熟練地進行約分和通分。 2. 掌握因數和倍數、質數和合數、奇數和偶數等概念,以及 2、 3、 5 的倍數的特征;會求 100 以內的兩個數的最大公因數和最小公倍數。 3. 理解分數加、減法的意義,掌握分數加、減法 的計算方法,比較熟練地計算簡單的分數加、減法,會解決有關分數加、減法的簡單實際問題。 4. 知道體積和容積的意義及度量單位,會進行單位之間的換算,感受有關體積和容積單位的實際意義。 5. 結合具體情境,探索并掌握長方體和正方體的體積和表面積的計算方法,探索某些實物體積的測量方法。 6. 能在方格紙上畫出一個圖形的軸對稱圖形,以及將簡單圖形旋轉 90 ;欣賞生活中的圖案,靈活運用平移、對稱和旋轉在方格紙上設計圖案。 7. 通過豐富的實例,理解眾數的意義,會求一組數據的眾數,并解釋結果的實際意義;根據具體的問題, 能選擇適當的統計量表示數據的不同特征。 8. 認識復式折線統計圖,能根據需要選擇合適的統計圖表示數據。 9. 經歷從實際生活中發現問題、提出問題、解決問題的過程,體會數學在日常生活中的作用,初步形成綜合運用數學知識解決問題的能力。 10. 體會解決問題策略的多樣性及運用優化的數學思想方法解決問題的有效性,感受數學的魅力。形成發現生活中的數學的意識,初步形成觀察、分析及推理的能力。 11. 體會學習數學的樂趣,提高學習數學的興趣,建立學好數學的信心。 12. 養成認真作業、書寫整潔的良好習慣。 二、教 材的編寫特點 本冊教材對于教學內容的編排和處理,是以整套實驗教材的編寫思想、編寫原則等為指導,力求使教材的結構符合教育學、心理學的原理和學生的年齡特征,繼續體現前幾冊實驗教材中的風格與特點。本冊教材仍然具有內容豐富、關注學生的經驗與體驗、體現知識的形成過程、鼓勵算法及解決問題的策略多樣化、改變學生的學習方式,體現開放性的教學方法等特點。同時,由于教學內容的不同,本冊教材還具有下面幾個明顯的特點。 1. 改進因數與倍數教學的編排,體現數學教學改革的新理念,培養學生的數學素養。 在小學階 段,有關因數與倍數的知識是傳統的教學內容,以往人們認為,它既是小學生應該掌握的重要的基礎知識,又是發展小學生邏輯思維的良好素材。同時,人們普遍認為,這部分內容概念集中,比較抽象,概念之間的聯系緊密,學生理解起來比較困難。也由于以往對這部分內容的編排,聯系實際的素材不多,學習這部分內容,既需要學生理解并記憶一些概念,又要求能夠運用這些概念進行一定的推理、判斷。所以,學習過程顯得比較枯燥。因此,這部分內容向來是小學數學教學的難點內容。 本套教材對這部分內容的處理,主要的依據是標準的要求和所提倡的理念 。“ 在標準中這部分內容的要求有所降低,明確在 1 100 的自然數中認識有關的概念和性質,并且這部分內容不作為一個獨立的領域出現,在教材的編排中可以將這部分內容分散到數的認識和計算中去。 ” (劉兼孫曉天主編全日制義務教育數學課程標準(實驗稿)解讀第 204 頁,北京師范大學出版社 2002 年 5 月第 1版。) 本冊教材的編排既注意體現標準中關于因數與倍數教學與教材編排的要求,同時注意體現近年來有關這部分內容教學改革的經驗。首先,將以往教材 “ 因數與倍數 ” 的教學內容分散編排,安排在本冊的兩個單元里教學。第二 單元 “ 因數與倍數 ” 包括因數和倍數的意義, 2、 5、 3 的倍數的特征,質數和合數的含義等,重點是讓學生了解和掌握這些重要的概念;在第四單元 “ 分數的意義和性質 ” 中,結合約分教學最大公因數的概念和求法,結合通分教學最小公倍數的概念和求法。其次,注意所涉及的數的范圍在 1 100 的自然數內,避免題目中的數目過大。此外,在例題的安排、素材的選取、習題的設計等方面都采取了新的措施,使得上述兩單元中相關內容的編排與以往的教材相比有下面幾個特點: ( 1)精簡教學內容,突出基本概念教學。 不再以整除概念為基礎引出因數與倍數 ,而是在直觀的基礎上,通過乘法算式得出因數與倍數的概念。由于學生已經積累了豐富的區分整除與有余數除法的知識和經驗,對整除的含義能夠清晰的理解,不出現整除的定義不會對學生理解其他概念產生影響。因此,本套教材中不再出現 “ 整除 ” 的數學化定義,而是借助整除的模式 na b直接引出因數和倍數的概念。 “ 分解質因數 ”和 “ 用短除法分解質因數 ” 不作為正式教學內容。在以往的教材中, “ 分解質因數 ” 及“ 用短除法分解質因數 ” 是作為求最大公因數、最小公倍數的基礎知識和技能安排的,因此, “ 分解質因數 ” 一直作為必學內容編排。而在本冊教材中 ,由于允許學生采用多種方法求最大公因數和最小公倍數, “ 分解質因數 ” 失去了其基礎知識的作用,因此不再作為正式教學內容,而只作為一個補充知識,安排在 “ 你知道嗎? ” 中介紹。 ( 2)增加了直觀和聯系實際。以往人們普遍認為,這部分內容的教學過于形式化,一系列的概念引出,似乎都與現實生活無關;從概念到概念,似乎都難以直觀。而小學數學的大多數教學內容的引出都注意從實際引入,注重提供直觀支柱。因此,本套教材對這部分內容的編排,盡量聯系實際,內容的呈現、展開注意貼近學生的認知特點。例如, 2、 5、 3 的倍數的特征的教學, 例題和習題,都增加了聯系學生生活實際的素材和插圖;用鋪地磚的問題情境引出最大公因數和最小公倍數的概念等。這樣的處理便于揭示數學與現實世界的聯系,有利于學生理解有關概念的現實意義,也有利于培養學生的數學抽象能力。 ( 3)增加探索性和開放性。例如, “3 的倍數的特征 ” 的得出, “ 做 100 以內的質數表 ” ,找出最大公因數和最小公倍數的過程,等等,都體現了放手讓學生探究,鼓勵用多種方法解決問題,培養學生的探索意識和解決問題的能力。 ( 4)加強了拓展性和知識性。內容精簡之后,出于拓展學生知識面的考慮,教材在 相關教學內容之后,利用 “ 你知道嗎? ”“ 生活中的數學 ” 等欄目,安排較多的拓展性知識作為閱讀資料提供給學生。例如,介紹完全數(第 14 頁)、互質數(第 83 頁)的概念,奇數和偶數在日常生活中的應用,哥德巴赫猜想,以及怎樣利用分解質因數的方法求兩個數的最大公因數(第 81 頁)等,以豐富學生的數論知識,激發繼續探求的欲望,培養學生對學習數學、探索數學持久而穩定的興趣。 綜上所述可以看出,這樣的編排使因數與倍數教學的教育價值得到擴充與提高。通過這樣的教學,不僅可以使學生很好的掌握與數論相關的最基礎的知識,體會數學學習的樂趣和實際價值,同時可使學生獲得邏輯思維的訓練,自主探索意識和能力的培養,從而逐步提高數學素養。 2. 改進認識分數的編排,注重溝通知識間的相互聯系,加強學生對分數意義的理解。 從本學期開始,學生將要系統地學習分數的意義和性質、分數的四則運算。同整數、小數知識一樣,分數知識也是小學數學教學的重要內容,是進一步學習數學和其他學科所必需的基礎知識。分數的概念比較難理解,計算起來也比較復雜。為了便于學生理解和掌握分數,本套教材仍然采用了以往教材的編排體系,把分數劃分為兩個階段教學。第一段安排在 三年級上冊,借助操作直觀,使學生對分數有初步的認識,雖然也出現了簡單的分數大小比較和同分母分數加、減法,目的是為了幫助學生更好地理解分數的初步概念,給學生積累一些感性知識。在系統認識了小數和初步認識了分數的基礎上,本冊將引導學生由感性認識上升到理性認識,概括出分數的意義,比較完整地從分數的產生、分數與除法的關系等方面加深對分數意義的理解,進而學習并理解與分數有關的基本概念,掌握必要的約分、通分、分數與小數互化等技能,以及分數的加、減法計算。在具體安排上,本套教材一方面注意體現標準所提倡的教學理念,提供豐 富的學習素材,在學生已有知識和經驗的基礎上闡述新的內容,給學生創設自主探索的空間,同時,還注意采取下面幾個方面的措施: ( 1)加強直觀,加深學生對分數意義的理解。 在小學數學里,引進分數概念是小學生數概念的一次重要擴展。對于小學生而言,分數比較抽象,學生在實際生活中遇到分數也比較少,因此理解和掌握是比較困難的。教材的編排比以往更重視用直觀的手段幫助學生體會、理解有關知識。例如, “ 分數的產生 ” 提供古人測量與孩子分物的兩幅直觀圖,幫助學生感悟分數是怎樣產生的,促進對分數意義的理解; “ 分數的意義 ” 則通過直觀插圖,從兩個方面說明 1/4 的含義(可以表示一個物體的 1/4,也可以表示一些物體的 1/4),在此基礎上給出分數單位的概念,揭示分數表示部分與整體的關系,加深學生對分數概念的理解。 ( 2)對部分教學內容作了適當的調整或精簡。其一,分數大小比較與通分結合在一起教學。其二,將以往 “ 約數與倍數 ” 的部分內容與分數的相關知識結合起來教學。即:將公因數、最大公因數與約分編為一節,同樣,將公倍數、最小公倍數與通分編為一節。這樣的調整,分散了教學的難點,充分利用學生已有知識的遷移,降低了學習的難度,有利于學 生認識的螺旋上升。 ( 3)加強開放性,培養學生靈活的思維和解決問題的能力。例如,教學求兩個數的最大公因數或最小公倍數,不再采用唯一的、固定的短除法分解質因數的方法,而是引導學生采用多種方法 “ 找 ” 最大公因數和最小公倍數。教學分數化成小數的方法,改進了過去只介紹單一的一般算法的做法,還介紹了把分母不是 10, 100, 1000, 的分數,利用分數的基本性質改寫成分母是 10, 100, 1000, 的分數,再改寫成小數的方法。這樣的編排體現了算法多樣化、尊重學生個性化的選擇,培養學生善于從不同的角度思考和解決問題 的意識和能力。 ( 4)加強聯系實際,從現實問題情境引出數學問題,得出數學知識。如前所述,有關分數、整除的知識都比較抽象,本套教材特別注意聯系實際,從解決實際問題的角度入手探討新知識。例如,無論是公因數與最大公因數、公倍數與最小公倍數的引入,還是約分、通分的給出,教材都創設了適當的現實問題情境,進而在解決實際問題中,抽象出數學概念,得出數學方法,揭示數學與現實世界的聯系。這樣編排既有利于學生理解公因數、最大公因數概念的現實意義,也有利于培養學生的數學抽象能力,還有利于培養學生的數學應用意識和解決實際問 題的能力。 3. 提供豐富的空間與圖形的教學內容,注重動手實踐與自主探索,促進學生空間觀念的發展。 小學階段空間與圖形教學的主要目標是發展學生的空間觀念,與前幾冊一樣,本冊教材繼續把促進學生空間觀念的發展作為空間與圖形內容編排的研究重點。在教學內容方面安排了 “ 圖形的變換 ”“ 長方體和正方體 ” 兩個單元。 “ 圖形的變換 ” 的內容是在第一學段學習基礎上的進一步擴展和提高。在以前的學習中,學生初步感知了生活中的對稱、平移和旋轉現象 ,初步認識了軸對稱圖形 ,能在方格紙上畫簡單的軸對稱圖形或畫出一個簡 單圖形沿水平或垂直方向平移后的圖形。本冊在此基礎上 ,讓學生進一步認識圖形的軸對稱,探索圖形成軸對稱的特征和性質,學習在方格紙上畫出一個圖形的軸對稱圖形和畫出一個簡單圖形旋轉 90 后的圖形 ,發展空間觀念。教材的編排,首先注意利用學生已有知識引導學生探索新知識。例如,探索圖形成軸對稱的特征和性質,先讓學生復習軸對稱圖形和畫對稱軸,再讓學生觀察軸對稱圖形的特征和畫出一個軸對稱圖形的另一半 ,從而使學生在已有知識的基礎上加深對軸對稱圖形特征的認識。其次,加強直觀教學圖形的特征。例如,圖形的旋轉的教學 ,讓學生觀察鐘表表 針和風車旋轉的過程 ,認識它們是怎樣按照順時針或逆時針方向旋轉的,明確旋轉的含義,探索圖形的旋轉的特征和性質。第三,設計大量的活動,幫助學生理解圖形的性質和變換,發展空間觀念。不僅設計了畫一畫、剪一剪等操作活動,而且還設計了需要學生想像、猜測和推理進行的探究活動。例如,讓學生判斷某個圖案分別是由哪種方法剪出來的,這就需要學生根據圖案的特征,在頭腦中對這個圖案進行“ 折疊 ” 和 “ 剪開 ” ,從而使學生的空間想像力和思維能力得到鍛煉的機會。 “ 長方體和正方體 ” 單元,則是學生系統認識立體圖形特征的開始。從認識平面圖 形擴展到認識立體圖形,是學生發展空間觀念的一次飛躍。長方體和正方體是最基本的立體圖形。通過教學不僅可以使學生掌握有關立體圖形方面的最基礎的知識,而且可以使學生對自己周圍的空間和空間中的物體形成初步的觀念,為進一步學習與發展打下基礎。在以往的教材中,這些部分內容的編排往往側重于理解和掌握立體圖形的特征和表面積、體積的計算方法,而對于促進學生空間觀念的發展在學習素材和實踐操作方面都顯不夠。本套教材在編排上突出的變化是,加強動手實踐、自主探索,讓學生經歷知識的形成過程,使學生得到較多的有關空間觀念的訓練機會。例如 ,每種圖形的特征,均采用讓學生動手實驗,自主探索得到;通過 “ 烏鴉喝水 ” 的故事,石頭放在盛水的杯子里的實驗等,以形象、生動的方式,為學生感知物體占有空間,理解體積概念提供豐富的感性經驗。又如,長方體體積的計算方法,先讓學生用方木塊拼擺長方體,通過對擺法不同的長方體的相關數據的觀察、分析和歸納,自己發現長方體的體積與它的長、寬、高之間的內在聯系,再總結出長方體體積的計算公式。教材編排還加強了聯系實際。例如,從現實生活素材抽象出長方體和正方體的幾何圖形;在介紹了容積概念后,還介紹了用排水法求不規則物體體積的方法; 在練習中適當增加了解決實際問題的題目(如第 32 頁第 6、 7 題);等等。這些新的變化使以往知識容量大且比較抽象的這一單元,為學生的學習和教師的教學,都提供了更為豐富的學習素材和開放的教學空間。 4. 加強統計知識的教學,發展學生的統計觀念,逐步形成從數學的角度進行思考問題的思維習慣。 通過四年多的數學學習,在統計與概率方面,學生已經掌握了一定的知識,形成了一定的能力,積累了一定的經驗。本冊教材關于統計的教學主要有兩部分,其一,教學新的統計知識 眾數,了解眾數的含義,學會找出數據的眾數,在統計分 析中能根據實際情況選擇適當的統計量來描述數據的特征;其二,教學復式折線統計圖,使學生更好地理解統計知識在解決問題中的作用,形成良好的統計觀念。 在教材的具體編排上,一是注意與先前學習過的統計知識的聯系,幫助學生理解所學的新內容。例如,眾數的含義是通過與平均數、中位數的對比得到的;復式折線統計圖也是由單式折線統計圖引出的。這樣既有助于加深對前面所學統計知識的理解,也便于對新知識的領悟。二是注意提供豐富的現實生活素材,凸現統計知識和方法的價值。 本冊教材所選素材涉及到體育、氣象、消費等方面,擴大了學生處 理信息的范圍,更好地體會統計知識和方法在實際生活中的作用,有利于發展學生的統計觀念,形成從數學的角度思考問題的良好習慣。 5. 有步驟地滲透數學思想方法,培養學生數學思維能力和解決問題的能力。 數學學習不僅可以使學生獲得參與社會生活必不可少的知識和能力,而且還能有效地提高學生的邏輯推理能力,進而奠定發展更高素質的基礎。因此,培養學生良好的數學思維能力是數學教學要達到的重要目標之一。本套教材總體設想之一是:系統而有步驟地滲透數學思想方法,嘗試把重要的數學思想方法通過學生可以理解的簡單形式,采用 生動有趣的事例呈現出來。通過教學使學生受到數學思想方法的熏陶,形成探索數學問題的興趣與欲望,逐步發展數學思維能力。據此,在本冊教材的 “ 數學廣角 ”單元,安排了 “ 找次品 ” 的教學,旨在通過 “ 找次品 ” 滲透優化思想,讓學生充分感受到數學與日常生活的密切聯系。優化是一種重要的數學思想方法,運用之可有效地分析和解決問題。教材以 “ 找次品 ” 這一探索性操作活動為載體,讓學生通過觀察、猜測、試驗等方式感受解決問題策略的多樣性,再通過歸納、推理的方法體會運用優化策略解決問題的有效性,感受數學的魅力,培養觀察、分析、推理以及解決問題 的能力。 用數學解決問題能力的培養是義務教育階段數學課程的重要目標之一,因此解決問題教學在數學教學中有著重要的作用。它既是發展學生數學思維的過程,又是培養學生應用意識、創新意識的重要途徑。與前面幾冊教材一樣,本冊教材仍然注意將解決問題的教學融合于各部分內容的教學中,通過各部分內容的教學培養學生用數學解決問題的能力。同時在 “ 數學廣角 ” 單元以及數學綜合運用活動中,加強了綜合運用知識解決問題和解決問題策略多樣化的教學,使學生逐步提高數學思維能力和解決問題的能力。本冊教材設計了 “ 粉刷圍墻 ” 和 “ 打電話 ” 兩個數 學綜合運用活動,讓學生通過小組合作的探究性活動,綜合運用所學的數學知識和方法(如簡單的優化思想方法、通過畫圖的方式發現事物隱含的規律等),動手實踐、解決問題,體會數學在日常生活中的應用價值,增強學生應用數學的意識,不斷提高學生的實踐能力和解決問題的能力。 6. 情感、態度、價值觀的培養滲透于數學教學中,用數學的魅力和學習的收獲激發學生的學習興趣與內在動機。 本次數學課程改革強調了對學生情感、態度和價值觀的培養,全面提高學生的素質。小學高年級學生已經具有了一定的知識和生活經驗,對自然與社會現象 有了一定的探求欲望,此時需要教育者進行有目的的啟發與引導。在數學教學中,就是要通過數學學習活動,使學生形成豐富的情感、積極的態度和正確的價值觀,這同樣是學生學習、生存和發展的重要基礎。本冊教材不僅內容涉及數學教學內容的各個領域,為學生探索奇妙的數學世界提供了豐富素材,而且注意結合教學內容安排了許多體現數學文化的閱讀材料、數學史實等,使學生的數學學習活動豐富多彩、充滿魅力。這些都有助于學生初步認識數學與人類生活的密切聯系,了解數學的價值,激發學生學習數學的欲望。 ( 1)提供豐富的培養學習數學興趣愛好的 素材。 考慮到學生年齡的增長、視野的擴大等因素,本套教材注意選擇知識內容深刻、內涵更豐富的教學素材,使學生在學習數學的同時,受到情感、態度、價值觀的熏陶。例如, “ 圖形的變換 ” 單元 ,呈現了大量現實生活中利用對稱、平移和旋轉設計出的美麗的事物和圖案;數學綜合應用 “ 打電話 ” 、數學廣角 “ 找次品 ” 等,都蘊涵了優化的思想方法,這些簡潔、巧妙的解決問題策略體現的是數學方法。 “ 數學在使人賞心悅目和提供審美價值方面,至少可與其他任何一種文化門類媲美 ” 。( M. 克萊因)這些都有利于激發學生學習數學的興趣,形成穩定的探索 數學的愛好。 ( 2)注意反映數學與人類生活的密切聯系以及數學的文化價值。 與前幾冊教材一樣,本冊教材仍然注意采用閱讀材料的形式,結合教學內容編排一些有關的數學史料,豐富學生對數學發展的整體認識,培養學生探索數學、學習數學的興趣與欲望。如安排了 14 個 “ 你知道嗎? ”6 個 “ 生活中的數學 ” 。介紹了現實生活中數學知識的應用、數學家的故事等等。這些內容不僅可以使學生對數學本身產生濃厚的興趣,激勵他們擴大知識面和進一步探索研究的欲望,而且對學生的情感、態度、價值觀的形成與發展也能起到潛移默化的作用。 ( 3)通過自主探索的活動,讓學生獲得學習成功的體驗,增進學好數學的信心。 結合學生的年齡特點和教學內容,本冊教材設計了很多需要學生自主探索的活動。例如,教學質數與合數概念,教材設計了讓學生自主探索 1 20 各數的因數個數有什么規律的活動,從而為理解質數與合數的概念獲得豐富的感性經驗;再如,找出 100以內的質數,讓學生自主探索,體驗找質數的一般方法 “ 篩法 ” 。長方體體積計算公式的推出,讓學生小組合作探索出長方體中所含體積單位的數量與它的長、寬、高的關系,再總結出長方體體積的計算公式。求最大公因數和最 小公倍數的教學,教材展示了學生自主探索出多種方法,具有較強的自主性和開放性,等等。讓學生有更多的機會應用數學知識,進行自主探索的實踐,并通過這些活動獲得自己成功、能力增強等良好體驗,從而逐步增強學好數學、會用數學的信心。 三、教學中需要準備的教具和學具 在前面幾冊的教師教學用書中,已經介紹了許多教具和學具,其中的一些仍可繼續使用。本冊結合教學內容,介紹一些新教具和學具,供參考。 1. 長方體和正方體實物及模型 教師和學生收集一些長方體和正方體形的實物,如藥盒、牙膏盒、火柴盒、化妝品盒、積木等。教科 書第 145、 147 頁還印有長方體和正方體的展開圖,可讓學生剪下來貼在厚紙上,然后制成長方體和正方體。 2. 演示分數用的教具 教師可以自制演示分數用的教具,制作的方法是:用硬紙板做兩個大小相同而顏色不同的圓,順著一條半徑分別剪開,將兩個圓從剪開的地方互相交叉放在一起 ,并使它們重合(如下圖)。教學時,教師轉動一個圓,可以演示不同的分數。在圓周上,可以畫出刻度,表示 1/2, 1/3, 1/4, 3. 其他教具 教師還可以根據各部分教學內容的需要自己準備或設計制作一些教具和學具。如教學體積時制備 1 m3、 1 dm3 模型,容納 1 L、 100 ml 液體的量杯;教學因數與倍數時,可根據教科書上的圖制成教具等。教師還可以根據需要自己制作其他適用的教具。 四、課時安排 根據義務教育階段國家數學課程標準(征求意見稿)中的 “ 各學段課程內容參考教學時間一覽表 ” ,實驗教材的編者為 五年級下學期數學教學安排了 60 課時的教學內容。各部分教學內容教學課時大致安排如下,教師教學時可以根據本班具體情況適當靈活掌握。 一、圖形的變換( 4 課時) 二、因數與倍數( 6 課時) 1 因數和倍數 2 課時左右 2 2、 5、 3 的倍數的特征 .3 課時左右 3 質數和合數 .1 課時左右 三、長方體和正方體( 12 課時) 1 長方體和正方體的 認識 .2課時左右 2 長方體和正方體的表面積 .2課時左右 3 長方體和正方體的體積 .7課時左右 整理和復習 1 課時 粉刷圍墻 1 課時 四、分數的意義和性質( 20 課時) 1 分數的意義 .4 課時左右 2 真分數和假分數 .3 課時左右 3 分數的基本性質 .2 課時左右 4 約分 .4 課時左右 5 通分 .4 課時左右 6 分數與小數的互化 .2課時左右 整理和復習 1 課時 五、分數的加法和減法 ( 7 課時) 1 同分母分數加、減法 .2 課時左右 2 異分母分數加、減法 .3 課時左右 3 分數加減混合運算 .2課時左右 六、統計( 3 課時) 打電話 .1 課時 七、數學廣角( 2 課時) 八、總復習( 4 課時) 一、圖形的變換 (一)教學目標 1. 使學生進一步認識圖形的軸對稱,探索圖形成軸對稱的特征和性質,能在方格紙上畫出一個圖形的軸對稱圖形。 2. 進一步認識圖形的旋轉 ,探索圖形旋轉的特征和性質,能在方格紙上把簡單圖形旋轉90 。 3. 初步學會運 用對稱、平移和旋轉的方法在方格紙上設計圖案 ,進一步增強空間觀念。 4. 讓學生在上述活動中,欣賞圖形變換所創造出的美 ,進一步感受對稱、平移和旋轉在生活中的應用,體會數學的價值。 (二)教材說明和教學建議 教材說明 學生在二年級已經初步感知了生活中的對稱、平移和旋轉現象 ,初步認識了軸對稱圖形 ,能在方格紙上畫簡單的軸對稱圖形 ,也能在方格紙上畫出一個簡單圖形沿水平或垂直方向平移后的圖形。在此基礎上 ,本單元讓學生進一步認識圖形的軸對稱,探索圖形成軸對稱的特征和性質,學習在方格紙上畫出一個圖形的軸對稱圖形和畫 出一個簡單圖形旋轉 90 后的圖形 ,發展空間觀念。結合本單元的學習 , 還安排了數學游戲 “ 設計鑲嵌圖案 ” 。 本單元教材在編排上有以下幾個特點。 1. 重視學生已有的知識基礎,探索兩個圖形成軸對稱的特征和性質。 在二年級學生已經認識了日常生活中的對稱現象,有了軸對稱圖形的概念,并能畫出一個軸對稱圖形的對稱軸和它的另一半 ,這里是進一步認識兩個圖形成軸對稱的概念,探索圖形成軸對稱的特征和性質,并學習在方格紙上畫出一個圖形的軸對稱圖形。本單元教材先設計了畫對稱軸,觀察軸對稱圖形的特征和畫出一個軸對稱圖形 的另一半的活動 ,加深對軸對稱圖形特征的認識,從而讓學生在已有的知識基礎上探索新知識。 2. 注重聯系生活實際,讓學生在具體情境中認識圖形的旋轉。 本單元聯系具體情境 ,讓學生觀察鐘表的表針和風車旋轉的過程 ,分別認識這些實物怎樣按照順時針和逆時針方向旋轉,明確旋轉的含義,探索圖形的旋轉的特征和性質 ,再讓學生學會在方格紙上把簡單圖形旋轉 90 。 3. 通過大量的活動,幫助學生理解圖形的對稱和旋轉變換,增強空間觀念。 本單元不僅設計了看一看、畫一畫、剪一剪等操作活動,而且注意設計需要 學生進行想像、猜測和推理進行探究的活動,培養學生的空間想像力和思維能力。例如,讓學生判斷幾個圖案分別是由哪種方法剪出來的。這就要求學生要根據圖案的特征,不斷在頭腦中對這個圖案進行 “ 折疊 ” ,并將最后的結果與下面的剪法對應起來。而且還讓學生思考 “ 還有什么剪法 ” ,從而使學生的空間想像力和思維能力得到充分的鍛煉。 教學建議 1. 注意讓學生真正地、充分地進行活動和探究。 由于本單元知識是在學生已有的關于對稱和旋轉的知識基礎上,并結合學生熟悉的生活情境進行安排的,學生完全可以通過觀察、想像、分析和推理 等過程,獨立探究出來。因此,教師要切實組織好學生的課堂活動,為學生創造進行探究的時間和空間。不要讓教師的演示或少數學生的活動和回答代替每一位學生的親自動手、親自體驗和獨立思考。這樣學生的空間想像力和思維能力才能得以鍛煉,空間觀念才能得到發展。 2. 本單元內容可以用 4 課時進行教學。 (三)具體內容的說明和教學建議 (第 2 11頁) 1. 主題圖。 教科書第 2 頁,呈現了現實生活中利用對稱、平移和旋轉設計出的許多美麗的事物和圖案,引出本單元內容的學習。目的是從現實生活的事物引入,讓學生在欣賞圖形變換所創造出的美好事物的過程中 ,進一步感受對稱、平移和旋轉在生活中的應用,體會數學的價值。 教學時,教師可以先讓學生觀察,說一說這些圖形有什么特征。學生可能會根據圖形的變換把這些圖形分成幾類,教師可從此處引出本單元內容的學習。 到本單元內容學習結束后, 還可以再讓學生觀察這幅主題圖,用所學的圖形變換的知識對這些圖形的設計進行分析,體會所學知識的作用和價值。 2. 例 1 上面的內容及例 1。 教材通過例 1 上面的內容,讓學生畫對稱軸的活動,幫助學生復習已有的關于軸對稱圖形的知識,在此基礎上教學例 1。在 “ 例 1” 中,首先 通過看一看、數一數的活動,使學生由觀察 “ 松樹 ” 這個軸對稱圖形,進一步觀察兩個 “ 小草 ” 圖形成軸對稱 ,從而引出兩個圖形成軸對稱的概念,并引導學生從整體上概括出軸對稱的特征。接下來,再引導學生觀察軸對稱圖形(松樹)及成軸對稱的兩個圖形(小草)的對應點與對稱軸之間有什么關系,使學生探索、發現圖形成軸對稱的性質,并為例 2 教學 “ 在方格紙上畫出一個圖形的軸對稱圖形 ” 做準備。 教學時,可以分三步進行。 ( 1)復習舊知。 讓學生獨立畫出例 1 上面圖形的對稱軸,幫助學生回憶軸對稱圖形的知識,以便在此基礎上 教學例 1。 ( 2)進一步認識圖形的軸對稱。 先讓學生觀察圖中的 “ 松樹 ” 和 “ 小草 ” 圖案有什么特征。根據已有的知識,學生很容易判斷出 “ 松樹 ” 圖案是軸對稱圖形,圖中的虛線是它的對稱軸(教師也可以先不出示這條虛線,讓學生畫出它的對稱軸。)進一步學生會發現,如果沿虛線折疊,兩個 “ 小草 ” 圖案,也將完全重合。這時教師可以適時的引出兩個圖形成軸對稱的概念,并引導學生從整體上概括出軸對稱的特征。 ( 3)探索圖形成軸對稱的基本性質。可以引導學生分別觀察 “ 小樹 ” 這個軸對稱圖形和成軸對稱的兩個 “ 小草 ” 圖案的 各對應點( A 與 A 、 B 與 B 、 C 與 C )與對稱軸之間有什么關系,使學生探索、發現圖形成軸對稱的基本性質。 這一部分內容教學需要特殊注意的是,我們不要求學生說出準確的數學語言,只要學生能用自己的語言描述出他發現的特征和性質就可以了。 例如,兩個圖形成軸對稱的數學概念是 “ 如果平面到其自身的一一變換的每對對應點 A、 A ,都垂直于同一直線 l,且被直線 l 平分,則這種變換叫做關于直線 l 的軸對稱。直線 l 叫做對稱軸,對應點 A 和 A 叫做關于軸 l 的對稱點,在直線反射下的對應圖形叫做關于軸 l 的對稱圖形 。 ” (馬忠林,幾何學,吉林人民出版社, 1984年 4 月第 1 版。)在初中數學中,概括成 “ 把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形 關于這條直線對稱 ,這條直線叫對稱軸,折疊后重合的點是對應點,叫做 對稱點 。 ” (義務教育課程標準實驗教科書數學八年級上冊,人民教育出版社, 2004 年 12 月第 1 版。)在小學階段,我們不要求學生說得這么準確,只要學生能用自己的語言把 “ 折疊 ”“ 重合 ” 這些基本特征概括出來就可以。 再如,圖形成軸對稱的基本性質,在初中數學中概括成 “ 如果兩個圖形關于 某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。 ” (義務教育課程標準實驗教科書數學八年級上冊,人民教育出版社, 2004 年 12 月第 1 版。)我們不要求學生概括出這樣的結論,只要學生能像書上的學生那樣直觀描述就可以了,使學生知道 “ 對應點到對稱軸的距離相等 ” 。 3. 例 2 及 “ 做一做 ” 。 ( 1)例 2。 教材通過讓學生畫小房子的另一半的活動,借助學生已經掌握的關于軸對稱的知識,使學生在能夠畫出軸對稱圖形另一半(屋頂、房體及大門)的基礎上,進一步能在方格紙上畫出一個圖形(窗戶)的軸對稱圖形。教材中的小精靈提問 “ 怎樣畫得又好又快? ” 就是提示學生在動手之前,先思考好畫的步驟和方法。 教學時,完全可以放手讓學生獨立完成。如果學生有困難,教師可以提示學生只要找到左邊圖形的幾個關鍵點的對稱點,再連線就可以了;可以利用已經掌握的圖形成軸對稱的特征 和性質方面的知識來找到關鍵點的對稱點。 ( 2)做一做。 教材讓學生判斷把一張紙連續對折三次,畫上一個圖形,剪出的是什么圖案。學生根據書上的折法,在頭腦中將彩紙展開,對這個圖形先做一次軸對稱變換,再對得到的圖形做一次軸對稱變換,得出最后的結果。在這個活動中,要讓學生進行空間想像,進一步體會軸對稱變換的特點。如果學生想像對折四次后剪出的圖案有困難,教師可以讓學生按書上的方法實際折一折、剪一剪,幫助學生進行想像。 4. 例 3 及相應的 “ 做一做 ” 。 ( 1)教材先通過讓學生觀察鐘表的表針和風車旋轉的過程 ,分別認識這些實物怎樣按照順時針和逆時針方向旋轉 90 ,明確旋轉的含義。再通過小精靈提問 “ 風車旋轉后,每個三角形有什么變化? ” 引導學生從圖形到線段再到點的角度,來觀察、探索圖形旋轉的特征和性質,并為例 4 教學 “ 在方格紙上把一個圖形按順時針或逆時針方向旋轉 90” 做準備。 教學時,可以分兩步進行。 明確旋轉的含義。 由于學生已經對生活中的旋轉現象有所認識,可以先讓學生觀察鐘表的指針,獨立思考如何描述出 “ 指針從 12 到 1 是怎樣旋轉的 ” 。然后再通過交流,使學生弄清順時針旋轉和逆時針旋轉的含義,明確要想表述清楚指針的旋轉,一定要說清“ 指針是繞哪個點旋轉 ”“ 是向什么方向旋轉 ”“ 轉動了多少度 ” 這幾點。 探索圖形旋轉的特征和性質。 可以先讓學生說一說,在風的吹動下,風車是如何旋轉的。學生利用剛剛掌握的旋轉的含義,可以說清楚風車發 生了怎樣的變換。 再讓學生思考小精靈提出的問題 “ 風車旋轉后,每個三角形有什么變化 ” ,探索圖形旋轉的特征和性質。學生會發現風車上的每個三角形都繞 O點逆時針旋轉了 90 ;旋轉后的三角形的形狀、大小都沒有發生變化,只是位置變了。教師還可以引導學生進一步觀察,學生可能會發現每個三角形的邊都繞 O 點逆時針旋轉了 90 ;每個頂點都繞O 點逆時針旋轉了 90 ;對應點到 O 點的距離都相等;對應點與 O 點所連線段的夾角都是 90 等。必要時,可借助學具操作幫助學生理解。 這一部分內容的教學與例 1 類似,不要求學生用準確的 數學語言進行總結和概括。例如,旋轉的概念是 “ 如果平面到其自身的一一變換,使任意一對對應點 A 、 A與平面上一個定點 O 距離相等, AOA 等于指定的有向角 ,而 O 和自身對應,則這樣的變換叫做 關于點 O 的旋轉 。定點 O 叫做 旋轉中心 ,定角 叫做 旋轉角 ,相同的指定方向叫做 旋轉方向 。 ” (馬忠林,幾何學,吉林人民出版社, 1984年 4 月第 1 版。)在初中數學中概括成 “ 把一個圖形繞著某一點 O 轉動一個角度的圖形變換叫做 旋轉 。點O 叫做 旋轉中心 ,轉動的角叫做 旋轉角 ,如果圖形上的點 P 經過旋轉變為點 P ,那么這兩個點叫做這個 旋轉的對 應點 。 ” (義務教育課程標準實驗教科書數學九年級上冊,人民教育出版社。)在小學階段,我們不要求學生這樣說,只要學生能概括出 “ 繞一個點旋轉 ”“ 向什么方向旋轉 ”“ 轉動多少度 ” 這幾點就可以了。像 “ 旋轉中心 ”“ 旋轉角 ” 這些名詞也不必要求學生掌握。 ( 2)第 6 頁 “ 做一做 ” 第 1 題。 教材呈現了幾個圖案,讓學生判斷分別是由哪一個圖形旋轉而成的。在判斷的過程中,要讓學生說清 “ 是哪個圖形繞哪個點旋轉 ”“ 是向什么方向旋轉 ” 。并讓學生感受數學的美,進一步理解圖形旋轉的性質,體會旋轉變換的特點。 5. 例 4 及相應 的 “ 做一做 ” 。 ( 1)例 4。 教材通過讓學生畫一畫的活動,借助學生已經掌握的圖形旋轉的知識,使學生學會在方格紙上把一個圖形按順時針或逆時針方向旋轉 90 。 教學時,可以讓學生小組合作完成。如果學生有困難,教師可以提示學生只要找到三角形 AOB 的幾個頂點的 對應點,再連線就可以了;在確定對應點的位置的時候,可以利用已經掌握的圖形旋轉的特征和性質方面的知識。如 “ 對應點與 O 點所連線段的夾角都是90 ;對應點到 O 點的距離都相等 ” 等,再借助方格紙、三角板等,來確定頂點的對應點的位置。無論學生用哪種方法,只要能按要求畫出旋轉后的圖形,都是可以的。必要時,可借助學具操作幫助學生理解。 ( 2)第 6 頁 “ 做一做 ” 第 2 題。 教材給出一個基本圖形和旋轉中心 O,讓學生利用旋轉設計一朵小花。這時,學生已經掌握了在方格紙上把一個圖形旋轉 90 的方法,雖然題中沒有給出旋轉的 角度和方向,學生完全可以根據所設計圖案的需要自行確定。 教學時,可以放手讓學生設計,再進行交流。在設計圖案的過程中,要讓學生在動手實踐中,進一步理解旋轉的特點和性質,體會旋轉所創造的美。 6. 欣賞設計。 教材先讓學生觀察從主題中抽取出來的兩幅 美麗圖案 ,感受圖形變換創造的美 ,體會平移、旋轉在圖案設計中的應用。接著讓學生應用對稱、平移或旋轉的方法設計圖案并進行交流 ,使學生進一步感受數學美和數學方法的價值。 這是一個實踐與綜合應用數學知識與方法的活動,教學時可以分兩步完成。 ( 1)指導學生在欣賞美麗的圖案的同時 ,分析對稱、平移或旋轉在其中的應用 ,從而加深對圖形變換的基本特征和方法的理解 ,為接下來的自主設計做準備。 ( 2)通過前面的學習,學生已經掌握了在方格紙上將圖形平移、對稱和旋轉的方法。此時,教師應鼓勵獨立完成設計圖案的任 務,再在全班展示交流。學生可能分別運用平移、對稱和旋轉變換設計圖案;也可能綜合運用不同方法設計圖案。教師不必作統一要求,同時注意對學生的設計要多給予肯定和贊賞。 7. 有關練習一中一些習題的說明和教學建議。 第 1 題,讓學生利用軸對稱設計美麗的圖案。這時,學生已經掌握了畫一個簡單圖形的軸對稱圖形。 作簡單圖形的軸對稱圖形的方法,可以放手讓學生設計,再進行交流。在設計圖案的過程中,要讓學生在動手實踐中進一步理解圖形成軸對稱的性質,體會軸對稱變換的特點。 第 2 題,教科書呈現了幾個剪 好的圖案,讓學生判斷分別是由哪種方法剪出來的,進一步培養學生的空間想像力和思維能力。 學生要根據圖案的特征,不斷在頭腦中對這個圖案進行 “ 折疊 ”“ 重合 ” ,再將最后的結果與下面的剪法對應起來,而且還讓學生思考 “ 還有什么剪法 ” 。這個活動比 “ 判斷兩個圖形是不是成軸對稱 ” 所要求的想像、猜測和推理等思維活動更多,在這個活動中學生的空間想像力和思維能力能夠得以鍛煉,空間觀念會得到發展。 如果學生有困難,教師可以調整題目的設計,反過來,讓學生根據剪法,選擇剪出的結果。學生根據每一種剪法,在頭腦中將彩紙展開, 對 “ 半棵小芽 ” 這個圖案連續做軸對稱變換,得出結果,再與上面剪出的圖案對照。如果學生還有困難,教師可以讓學生按書上的方法實際折一折、剪一剪,再幫助學生進行想像。 第 3 題,是讓學生綜合運用所學的有關對稱、平移和旋轉變換的知識進行判斷。注意讓學生感受數學的美,體會圖形變換在現實生活中的應用。 第 4 題,可仿照第 6 頁 “ 做一做 ” 第 2題進行教學。 第 5 題,可仿照第 4 頁的 “ 做一做 ” 和第 2題進行教學。 第 6 題,讓學生通過實驗發現另一類圖形 “ 旋轉對稱圖形 ” 的特點。這些圖形繞它們的中心旋轉一定的角 度,還與原來圖形重合。這里不必讓學生了解 “ 旋轉對稱圖形 ” 這個概念,只要學生能用自己的語言描述出圖形的這一特征就可以了。在教學時,可以先讓學生畫出每個圖形的兩條對稱軸,確定中心 O,再讓學生想像這個圖形在旋轉過程中會出現什么現象,發現這些 “ 旋轉對稱圖形 ” 的特點。如果學生有困難,教師可以通過操作幫助學生直觀的看到這些現象。可以事先為學生準備一張底卡(印有這些圖形的硬紙卡)和這些圖形卡片,讓學生畫或折出兩條對稱軸后確定這些圖形的中心 O,再用大頭針穿過圖形卡片和底卡上相應圖形的中心 O,再進行旋轉。 8. 數學 游戲:設計鑲嵌圖案。 四年級學生初步了解了圖形的密鋪(鑲嵌)現象,本單元在此基礎上,通過數學游戲拓展鑲嵌圖形的范圍,讓學生用圖形變換設計鑲嵌圖案,進一步感受圖形變換帶來的美感以及在生活中的應用。 本活動可放手讓學生獨立設計,再進行交流。分析交流豐富多彩的鑲嵌圖案時,不管運用了什么變換,其本質都是把可鑲嵌的基本幾何圖形進行分割后再經過圖形變換拼組而成的鑲嵌圖形。 教師小結時對科學性問題要糾正,同時以表揚為主。 二、因數與倍數 (一)教學目標 1. 使學生 掌握因數、倍數、質數、合數等概念,知道有關概念之間的聯系和區別。 2. 使學生通過自主探索,掌握 2、 5、 3 的倍數的特征。 3. 逐步培養學生的數學抽象能力。 (二)教材說明和教學建議 教材說明 通過四年多的數學學習,學生已經掌握了大量的整數知識(包括整數的認識、整數四則運算),本單元讓學生在前面所學的整數知識基礎上,進一步探索整數的性質。本單元涉及到的因數、倍數、質數、合數以及第四單元中的最大公因數、最小公倍數都屬于初等數論的基本內容。數論是一個歷史悠久的數學分支,它是研究整數的性質的一門學問,以嚴 格、簡潔、抽象著稱。數學一直被認為是 “ 科學的皇后 ” ,而數論則更被譽為 “ 數學的皇后 ” ,可見數論在數學中的地位。本單元的知識作為數論知識的初步,一直是小學數學教材中的重要內容。通過這部分內容的學習,可以使學生獲得一些有關整數的知識,另一方面,有助于發展他們的抽象思維。 在數論中,數的整除性理論又是最為基本的理論,本單元的所有概念都是建立在數的整除性的基礎之上。對于任意整數 a、 b,都存在整數 n、 r,使 b na r(其中r a),當 r 0 時,我們就說 b 能被 a 整除(或 a 能整除 b),此時, b na。其他的一些概 念,如因數、倍數等,都是以此為基礎的。 在以往的數學教材中,也一直把 “ 數的整除 ” 概念編排在這一單元的起始位置,再把因數(以往的教材中稱為約數),倍數, 2、 5、 3 的倍數的特征(以往的教材稱為能被 2、 5、 3 整除的數的特征),質數,合數,分解質因數,最大公因數(以往的教材中稱為最大公約數),最小公倍數等內容共同編排在后面,合為一個單元。這樣編排,雖然突顯了以上這些概念的緊密邏輯關系,但也形成了同一單元內概念多而集中、抽象程度過高的現象,學生在學習時經常出現概念混淆、理解困難的問題。因此,與以往教材相比,本 套實驗教材在編寫時,對這部分內容進行了以下幾方面的調整。 1. 我們在本單元研究的都是整除現象,因此,可以說整除概念是貫穿這部分教材的一條主線。但 “ 整除 ” 這一詞匯是否必須出現呢?讓學生大量敘述 “ 能被 整除 ”“ 能整除 ” 是否必要?簽于學生在前面已經具備了大量的區分整除與有余數除法的知識基礎,對整除的含義已經有了比較清楚的認識,不出現整除的定義并不會對學生理解其他概念產生任何影響。因此,本套教材中刪去了 “ 整除 ” 的數學化定義,而是借助整除的模式 na b 直接引出因數和倍數的概念。 2. 在以往的 教材中,由于求最大公因數、最小公倍數時,采用的方法是唯一的、固定的,也就是用短除法分解質因數的方法。因此,作為求最大公因數、最小公倍數的必要基礎, “ 分解質因數 ” 一直作為必學內容編排。而在本冊教材中,由于允許學生采用多樣的方法求最大公因數和最小公倍數,分解質因數也失去了其不可或缺的作用,同時,也是為了減少這一單元的理論概念,教材不再把它作為正式教學內容,而是作為一個補充知識,安排在 “ 你知道嗎? ” 中進行介紹。 3. 公因數、最大公因數和公倍數、最小公倍數概念的建立是以因數、倍數的概念為基礎的,也是為后面 學習約分(需要盡快找出分子、分母的公因數)、通分(需要盡快找出兩個分數分母的公倍數)做準備的,在整個知識鏈中起著承上啟下的作用。這兩個內容可以集中編排在本單元,也可以分散編排在約分、通分的前面。考慮到本單元概念較多,抽象程度高,本套教材把這兩部分內容分散編排在第四單元,也更加突出了它們的應用性。 教學建議 1. 由于這部分內容較為抽象,很難結合生活實例或具體情境來進行教學,學生理解起來有一定的難度。在過去的教學中,一些教師往往忽視概念的本質,而是讓學生死記硬背相關概念或結論,學生無法理清各概念間的前 后承接關系,達不到融會貫通的程度。再加上有些教師在考核時使用一些偏題、難題,導致學生在學習這部分知識時覺得枯燥乏味,體會不到初等數論的抽象性、嚴密性和邏輯性,感受不到數學的魅力。為了克服以上教學中出現的問題,應注意以下兩點。 ( 1)加強對概念間相互關系的梳理,引導學生從本質上理解概念,避免死記硬背。本單元中因數和倍數是最基本的兩個概念,理解了因數和倍數的含義,對于一個數的因數的個數是有限的、倍數的個數是無限的等結論自然也就掌握了,對于后面的公因數、公倍數等概念的理解也是水到渠成。要引導學生用聯系的觀 點去掌握這些知識,而不是機械地記憶一堆支離破碎、毫無關聯的概念和結論。 ( 2)由于本單元知識特有的抽象性,教學時要注意培養學生的抽象思維能力。雖然我們強調從生活的角度引出數學知識,但數論本身就是研究整數性質的一門學科,有時不太容易與具體情境結合起來,如質數、合數等概念,很難從生活實際中引入。而學生到了五年級,抽象能力已經有了進一步發展,有意識地培養他們的抽象概括能力也是很有必要的,如讓學生通過幾個特殊的例子,自行總結出任何一個數的倍數個數都是無限的,逐步形成從特殊到一般的歸納推理能力,等等。 2. 這部分內容可以用 6 課時進行教學。 (三)各小節的教材說明和教學建議 1. 因數和倍數 (第 12 16頁) 教材說明 這部分教材首先介紹了因數和倍數的概念,然后在例 1 和例 2 分別介紹了求一個數的因數和倍數的方法。 1. 因數和倍數。 編寫意圖 本單元在引入因數和倍數的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應著一對有整除關系的數,如ba n 表示 b 能被 a 整除, bn a 表示 b 能被 n 整除。在此基礎上再引出因數和倍數的概念。實際上,如前所述,由于乘除法本身就存在著互逆關系,用乘法算式(如 b na)同樣可以表示整除的含義。因此,本套教材中沒有用數學化的語言給 “ 整除 ” 下定義,而是利用一個簡單的實物圖( 2 行飛機,每行 6 架)引出一個乘法算式 26 12,通過這個乘法算式直接給出因數和倍數的概念。這樣,學 生不必通過 122 6 得出 12能被 2 整除,進而 2 是 12 的因數, 12 是 2 的倍數。再通過 126 2 得出 12 能被 6 整除,進而 6 是 12 的因數, 12 是 6 的倍數,大大簡化了敘述和記憶的過程。在這兒,用一個乘法算式 26 12 可以同時說明 “2 和 6 都是 12 的因數, 12 是 2 的倍數,也是 6的倍數。 ” 接著,通過 34 12,進一步鞏固因數和倍數的概念。在學生熟練掌握了因數和倍數的概念以后,教材讓學生試著找出 12 的其他因數,引導學生寫出兩個數的積等于 12 的另一個乘法算式 112 12,從而得出 1 和 12 也是 12 的因數。 最后,教材對整數 0 進行特殊說明,以明確本單元中數的研究范圍。因為數論只研究整數的性質,所以,本單元中涉及到的數都是整數。由于學生還沒有學習負整數,因此,本單元的整數與自然數同義。根據因數和倍數的定義, 0 是任何非零自然數的倍數,任何非零自然數都是 0 的因數。但是考慮到以后研究最大公因數和最小公倍數時,如果不排除 0,很多問題無從討論,如討論 0 和 5 的最大公因數既沒有實際意義,也沒有數學意義,再如,如果把 0 考慮在內,任意兩個自然數的最小公倍數就是 0,這樣的研究沒有任何價值。因此,教材指出本單元研究的內容一般不 包括 0,這樣就避免了一些不必要的麻煩。 教學建議 教學因數和倍數概念時,可以結合教材上的直觀圖( 2 行飛機,每行 6 架)引導學生列出乘法算式 26=12 或 62=12 ,再根據所列的乘法算式直接給出因數和倍數的概念。接下來,再結合直觀圖( 3 行飛機,每行 4 架)進一步鞏固因數和倍數的概念。最后,讓學生脫離情境圖,想一想 12 還有哪些因數,引導學生列出乘法算式 112=12或 121=12 ,概括出 “1 和 12 都是 12 的因數, 12 是 1 和它本身的倍數 ” 。在此基礎上,教師可以引導學生利用一般的乘法算式 ab=c 歸納出因數 和倍數的概念: a、 b 都是 c的因數, c 是 a 和 b 的倍數。 教學時,應注意以下四點:( 1)雖然本套教材不是從過去的整除定義(形式上是除法算式)出發,而是通過一個乘法算式來引出因數和倍數概念,但在本質上仍是以“ 整除 ” 為基礎,只是略去了許多中間描述。因此,要注意,只有在這個乘法算式中的因數和積都是整數的情況下才能討論因數和倍數的概念。教學時,教師也可以舉出一些反例加以說明,如 50.8 4,雖然等式成立,但不能說 5 和 0.8 是 4 的因數,或 4 是5 和 0.8 的倍數。( 2)因數和倍數是一對相互依存的概念,不能單獨存在。 a是 b 的因數,反過來 b 就是 a 的倍數,因此,描述因數或倍數時必須說清楚誰是誰的因數(或倍數),要引導學生使用比較規范的語言,如 “2 是 12 的因數, 12 是 2 的倍數 ” 而不是“2 是因數, 12 是倍數 ” ,在課堂上或練習中學生如果出現類似的錯誤要及時加以糾正。( 3)要注意區分乘法算式各部分名稱中的 “ 因數 ” 和本單元中的 “ 因數 ” 的聯系和區別。在同一個乘法算式中,兩者都是指乘號兩邊的整數,但前者是相對于 “ 積 ” 而言的,與 “ 乘數 ” 同義,可以是小數,而后者是相對于 “ 倍數 ” 而言的,與以前所說的 “ 約數 ”同義,說 “ 是 的因數 ” 時,兩者都只 能是整數。( 4)要注意區分 “ 倍數 ” 與前面學過的 “ 倍 ” 的聯系與區別。 “ 倍 ” 的概念比 “ 倍數 ” 要廣,如我們可以說 “15 是 3 的5 倍 ” ,也可以說 “1.5 是 0.3 的 5 倍 ” ,但我們只能說 “15 是 3 的倍數 ” ,卻不能說“1.5 是 0.3 的倍數 ” 。我們在求一個數的倍數時,運用的方法與 “ 求一個數的幾倍是多少 ” 是相同的,只是這里的 “ 幾倍 ” 都是指整數倍。 2. 例 1。 編寫意圖 例 1 是教學一個數的因數的求法。教材直接提出問題 “18 可以由哪兩個數相乘得到? ” 引導學生利用因數的概念來求 18 的因數。在這里,每列出一個乘法算式,就可以求出 18 的一對因數,只要學生有序地寫出兩個數的乘積是 18 的所有乘法算式,就可以把因數找全。在此基礎上,再用集合圖表示出一個數的全部因數,為后面用交集形式表示兩個數的公因數打下基礎,使學生初步體會到一個數的因數的個數是有限的。 接下來,通過 “ 做一做 ” 進一步鞏固求 一個數的因數的方法。 最后,以例 1 和 “ 做一做 ” 為基礎,引導學生抽象地概括出一個數的最小因數和最大因數分別是什么,總結出一個數的因數的個數是有限的結論,向學生滲透從個別到全體、從具體到一般的抽象歸納的思想方法。 教學建議 教學例 1 時,要引導學生從因數的概念出發去求 18 的因數,也就是想:哪兩個整數相乘的積是 18?從每個滿足條件的乘法算式中可以找出 18 的一對因數。找的時候,要引導學生有序地思考。教學時,如果學生用除法思考,固定被除數 18,改變除數,看除得的商是不是整數,如果是,則除數和商都是被除數 的因數,這樣的思考方法也是應該鼓勵的。等學生把 18 的所有因數都寫出來,再讓他們用集合的形式表示出來,為后面求兩個數的公因數做準備。 然后,讓學生做 “ 做一做 ” 的題目。通過例 1 和 “ 做一做 ” 的練習,引導學生觀察到每個數的最小因數是 1,而最大因數是它本身,因此,它的因數的個數是有限的。 3. 例 2。 編寫意圖 例 2 是教學一個數的倍數的求法。根據一個數的倍數的定義,可知該數和任意非零自然數之積都是該數的倍數。因此, 2 的倍數也就是 2 和任意非零自然數的乘積,學生在列乘法算式時就會發現這樣的算式是列不完的,因此, 2 的倍數的個數是無限的。接下來,也用集合圖表示出 2 的倍數,為后面學習用交集表示兩個數的公倍數打下基礎。 “ 做一做 ” 中分別安排了讓學生求 3、 5 的倍數的練習,一方面鞏固了對倍數概念的理解,另一方面,結合例 2 中 2 的倍數,為后面學習 2、 3、 5 的倍數的特征做準備。 最后,與例 1 的編排相類似,教材通過求以上幾個數的倍數,使學生總結出:一個數的倍數的個數是無限的,只有最小的倍數,沒有最大的倍數,為后面學習最小公倍數打下基礎。 教材還用 “ 你知道嗎? ” 介紹了完全數的概念,以豐富學生的數論知識,引導學生在課余時間探索完全數的性質,也可以先求出教材上提供的幾個數的因數,然后驗證是否符合完全數的定義。 教學建議 教學例 2 時,可以參照例 1 的方法進行教學。在找一個數的倍數時,要引導學生從 “ 這個數的整數倍 ” 考慮,因此,可以從最小的倍數找起。學生找出了幾個 2 的倍數 以后,教師可以提問 2 的倍數有多少個,引導學生通過想自然數的個數是無限的,進而想到 2 的自然數倍也是無限的,無法一一羅列,可以用省略號表示。在用集合圖表示2 的倍數時,也要注意提醒學生在集合圈里寫出省略號。然后在完成 “ 做一做 ” 的基礎上,引導學生觀察并思考:一個數的最小倍數是幾?有沒有最大的倍數?引導學生自主得出結論。 4. 關于練習二中一些習題的說明和教學建議。 第 2 題,讓學生分別找出 36 和 60 的因數,在學生完成題目后,教師可以有意識地讓學生觀察一下有哪些數是這兩個數共同的因數,這些共同因數中最大 的是什么,為后面學習 “ 公因數 ” 和 “ 最大公因數 ” 做準備。 第 3 題,讓學生分別找出 8 和 9 的倍數,在學生完成題目后,教師可以有意識地讓學生觀察一下有哪些數是這兩個數共同的倍數,這些共同倍數中最小的是什么,為后面學習 “ 公倍數 ”“ 最小公倍數 ”“ 互質的兩個數的最小公倍數是它們的乘積 ” 等知識做準備。 第 5 題,幫助學生辨析某些概念。如說因數和倍數時,必須說清楚誰是誰的因數(或倍數)。再如,任何一個非零自然數的倍數的個數都是無限的,任何非零自然數都有因數 1,等等。 第 6 題,通過猜數游戲鞏固因數和倍數的 概念,第( 1)題,使學生認識到,隨著限制條件的增多,符合條件的數越來越少。實際上,題目中共有四個限制條件,先看42 的因數有 1、 2、 3、 6、 7、 14、 21、 42,其中只有 7、 14、 21、 42是 7 的倍數,這四個數中只有 14 和 42 是 2 的倍數,其中只有 42 才是 3 的倍數,所以,符合條件的數只有 42。第( 2)、( 3)題,都使學生進一步理解一個數的最大因數和最小倍數都是它本身。 第 16 頁的思考題,是通過兩個特殊的例子,引導學生通過不完全歸納,總結出以下的結論:如果兩個數都是一個數的倍數,那么這兩個數的和也是這個數 的倍數。還可以引導學生用數學化的方式對這個結論加以證明:如果 B是 A 的倍數,那么必然存在一個整數 m,使 B Am,如果 C 也是 A 的倍數,那么必然存在一個整數 n,使 C An,那么 B C Am An A( m n),因此, B C 也是 A 的倍數。這個結論還可以進一步擴展:如果有 n 個數都是一個數的倍數,那么這 n 個數的和也是這個數的倍數。 2. 2、 5、 3 的倍數的特征 (第 17 22頁) 這部分內容是在因數、倍數的基礎上進行教學的,是求最大公因數、最小公倍數的重要基礎,從而也是學習約分和通分的必要前提。學生的分數運算是 否熟練,取決于約分和通分掌握得是否熟練,而約分和通分是否熟練,在很大程度上取決于能不能很快地根據分子、分母的特征看出分子和分母有什么公因數,能不能很快地求出幾個分數的分母的公倍數。因此,熟練掌握 2、 5、 3 的倍數的特征,具有十分重要的意義。 教材先教學 2、 5 的倍數的特征,再教學 3 的倍數的特征。因為 2、 5 的倍數的特征僅僅體現在個位上的數,比較明顯,容易理解。而 3 的倍數的特征,不能只從個位上的數來判定,必須把其各位上的數相加,看所得的和是否為 3 的倍數來判定,學生理解起來有一定的困難,因此把它放在 2、 5 的倍 數的特征后面教學。 1. 2 的倍數的特征。 編寫意圖 教材從學生已有的生活經驗和知識基礎出發,通過電影院里 “ 雙號 ” 的概念,使學生利用因數和倍數的概念,判斷出這些 “ 雙數 ” 都是 2 的倍數。然后引導學生觀察這些座位號的個位上的數的特點,進而概括出 2 的倍數的特征。 在學生總結了 2 的倍數的特征的基礎上,教材又介紹了偶數和奇數的概念。 教學建議 教學時,可以先讓學生觀察情境圖,并聯想在生活中哪兒還見過雙數、單數,如街道或胡同一邊的門牌號是雙數,另一邊是單數。接下來,讓學生思考:為什么這些數稱為雙數?它們和 2 有什么聯系?(學生在生活中已經具備了 “ 雙 ” 即為 “2 個 ” 的經驗。)引導學生列出它們與 2 的倍數關系,說明這些數都是 2 的倍數。也可以讓學生聯系前面學過的 2 的倍數的求法,說出若干個 2 的倍數。在此基礎上,引導學生通過觀察,發現這些數的個位上都是 0、 2、 4、 6、 8,從而 形成猜想:所有 2 的倍數的個位上都是 0、 2、 4、 6、 8。因此,判斷一個數是不是 2 的倍數,只要看這個數的個位上是什么數就可以了。接下來,可以讓學生舉出一些數(包括比較大的數,如 1045、 8394)進行驗證。由于 2 的倍數的個數是無限的,無法一一驗證,在這兒,只要學生通過觀察有限個 2 的倍數的特征,總結出所有 2 的倍數的特征就可以了,不要求嚴格的數學證明(見參考資料)。 接下來,介紹偶數和奇數的概念。我們在這個單元中一般不考慮 0,在這兒需要作一個特殊說明,因為 0 也是 2 的倍數,因此 0 也是偶數。學生掌握了偶數和奇數 的定義后,教師可以給出一些數,讓學生判斷它們是奇數還是偶數,也可以讓學生再舉出一些偶數和奇數。在此基礎上,可以引導學生將 2 的倍數的特征表示為 “ 個位上是偶數的都是 2 的倍數 ” 。 2. 5 的倍數的特征。 編寫意圖 編排方式與 2 的倍數的特征相似,也是通過實際情境引入, 讓學生在觀察 5 的倍數的個位上的數的特點基礎上概括出 5 的倍數的特征。 教學建議 教學時,可以參照 2 的倍數的特征的教法進行。完成 “ 做一做 ” 的題目時,可以使學生初步感受公倍數的概念,并引導學生總結出:如果一個數既是 2 的倍數又是 5的倍數,那它必定是 10 的倍數,也就是末尾有 0 的數( 0 除外)。 3. 3 的倍數的特征。 編寫意圖 更加突出學生的自主探索,使學生在觀察 猜想 推翻猜想 再觀察 再猜想 驗證的過程中,概括出 3 的倍數的特征。教材上通過逐步增加提示的方式,減緩學生在概括時的思考難度。 教學建議 教學時,要引導學生經歷觀察、猜測、驗證的完整過程。由于學生在概括 2 和 5的倍數的特征時,只注意到了個位數,因此,學生在概括 3 的倍數時,也會很自然地尋找個位上的數的特征。但通過觀察,發現這些數的個位上的數有的是 3 的倍數,有的不是,于是產生認知沖突。接下來, 經過進一步提示,引導學生觀察各位上數的和,發現各位上數的和是 3 的倍數。于是,形成新的猜想:一個數如果是 3 的倍數,那么它各位上數的和也是 3 的倍數。為了驗證這一猜想,可以補充一些其他的數,如 493 147,1663 498 等,使學生進一步確認這一結論的正確性。還可以任意寫一個數,利用這一結論來驗證,如 3697, 3 6 9 7 25, 25 不是 3 的倍數,而 36973 也不能得到整數商,因此,它不是 3 的倍數。通過這樣的方式也使學生認識到:找出某個規律后,還要找出一些正面的、反面的例子進行檢驗,看是不是普遍適用。 為了使學生更好地掌握 3 的倍數的特征,進行課堂練習時,還可以把一些數各個數位上的數經過不同的排列,再讓學生判斷,以加深對 “ 各位上數的和是 3 的倍數 ”的理解。如完成 “ 做一做 ” 第 1 題時,學生判斷完 45 是 3 的倍數后,教師可以再讓學生判斷一下 54 是不是 3 的倍數。 完成 “ 做一做 ” 第 2 題時,要引導學生有序地思考問題。第 18 頁的 “ 做一做 ”已經有所鋪墊,學生已經知道只有末尾是 0 的數才能同時是 2和 5 的倍數,而此題中所求的數又是一個三位數,所以,就要從幾百幾十中找這樣的數,這樣,每增加一個條件,符合條件的數的范圍就 縮小一些,通過層層 “ 篩選 ” ,求出符合條件的數是 120。 利用 2、 5、 3 的倍數的特征來判斷一個數是不是 2、 5或 3 的倍數,其方法是比較容易掌握的,但要形成較好的數感,達到熟練判斷的程度,也不是一、兩節課所能解決的,還需要進行較多的練習進行鞏固。 4. 關于練習三中一些習題的說明和教學建議。 第 2 題,是讓學生尋找生活中的奇數和偶數,應鼓勵學生盡量多地發現身邊的數學信息,如住幾號樓,公共汽車是幾路的,全村有幾戶人家,全班有多少人,等等。有了這些數據后,還可以在后面的練習中進一步判斷它們是不是 2、 5、 3 的倍數。 第 5 題,是一個解決實際問題的題目。由于媽媽買的是一些馬蹄蓮和郁金香,馬蹄蓮 10 元 1 枝,所以它的總價是 10 的倍數,也就是整十數,而郁金香是 5 元 1 枝,所以它的總價是 5 的倍數,個位上是 0 或 5,兩者合起來的總價一定是幾十元或幾十五元,因此,服務員找的錢數不對。 第 7 題是開放題,要運用 3 的倍數的特征來解決。如想 “7 是 3 的倍數 ” ,就要想 “ 7 是 3 的倍數 ” , 中符合條件的數有 2、 5、 8。 第 8 題也是開放題,要找出一個偶數,同時又是 3 的倍數,可以先確定該數的個位上的數,再根據 3 的倍數的特征來確定其他位的數。而要找一個奇數,同時又是 5的倍數,也是先確定個位上的數必須是 5,其他數位上可以取任意數。 第 10 題,可以先把從 4 張卡片里取 3 張所能組成的所有三位數列出來: 430、403、 340、 304, 450、 405、 540、 504, 350、 305、 530、 503, 435、 453、 345、 354、534、 543。羅列的時候,要引導學生采用有序的思考方式,保證不重復、不遺漏。然后再分別看這些數屬于下面的哪一類。也可以先根據下面各類數的特點確定范圍,如這些數字能組成的偶數,個位數只能是 0和 4,那么相應的數就有 430、 340、 350、 530、 450、540, 304、 504、 354、 534。再如,由于這 4 張卡片中的 3 個數相加之和是 3 的倍數的情況有 4 5 0 9, 4+3+5=12,因此能組成的 3 的倍數有 450、 405、 540、 504; 345、354、 435、 453、 534、 543。教學時,還可以把本題進一步拓展,如讓學生思考用這 4張卡片能組成的 3 的倍數中,一位數有哪些,兩位數、四位數呢? 第 11*題,是讓學生進一步探索偶數和奇數的性質。練習時,可以讓學生結合具體的數來理解。 3. 質數和 合數 (第 23 26頁) 在數論中,有關質數和合數的理論一直吸引著數學家們不斷探索。例如,我們已經知道質數的個數是無限的,但人們仍在不斷地尋找更大的質數, 1996 年 9 月初美國的科學家找到了一個新的最大質數( 21257787-1)。再比如, 1742 年,德國數學家哥德巴赫提出了著名的 “ 哥德巴赫猜想 ” :任何大于 2 的偶數,都可以寫成兩個質數之和,這一數學王冠上的明珠至今仍吸引著無數人孜孜以求。因此,在質數和合數的世界里充滿了神奇的數學魅力。 在小學階段,只是讓學生在因數、倍數的基礎上初步掌握質數、合 數的概念,為后面學習求最大公因數、最小公倍數以及約分、通分打下基礎。在本單元,要求學生能用自己的方法找出 100 以內的質數,并熟練判斷 20 以內的數哪個是質數,哪個是合數。 1. 質數和合數。 編寫意圖 教材首先讓學生找出 1 20 各數的全部因數,然后按照每個數的因 數的個數進行分類。在此基礎上給出質數、合數的概念。同時說明 1 既不是質數,也不是合數,以加深學生對某些特殊數的認識。 教學建議 教學時,可以先復習因數的概念,然后再讓學生找出 1 20 各數的所有因數,并引導學生觀察這些數的因數有什么不同,可以怎樣分類。學生通過自主探索,會自覺地把這些數分成三類:只有因數 1 的;只有 1 和它本身這兩個因數的;除了 1 和本身之外還有其他因數的。在分類的基礎上,再引出質數、合數的概念,說明只有 1 和它本身兩個因數的數叫質數,有兩個以上因數的數叫合數, 1 既不是質數,也不是合數。學生掌握 了質數和合數的概念以后,教師可以出示幾個數,讓學生判斷是質數還是合數,也可以由學生自己分別寫出幾個質數和幾個合數。 2. 例 1。 編寫意圖 本例讓學生運用質數的概念找出 100 以內的所有質數。學生通過此例可以學會找質數的一般方法 “ 篩法 ” ,即劃掉每個質數的所有倍數(它本身除外),剩下的都是質數。由于小學用到的質數比較少,所以教材中只要求學生找出 100 以內的質數。這些質數不必要求學生都背熟,但是熟悉 20 以內的質數還是有必要的。 分解質因數的內容雖然不作為正式教學內容,但作為一種重要的方法技能,教材 還是把它安排在 “ 你知道嗎? ” 中進行介紹,供學生閱讀參考。 教學建議 教學時,盡量采取讓學生自己完成任務的教學方式。學生在找 100 以內的質數時,所用的方法可能是多樣化的。例如,有的學生是先找每個數分別有幾個因數,然后再根據質數和合數的意義進行判斷。還有的學生采用的是 “ 排除法 ” ,因為質數只有因數 1 和它本身,所以,每個質數后面該質數的所有倍數都是合數,如 2 是質數,但是 2的倍數( 2 本身除外)如 4, 6, 8, 10, 都是合數, 3 是質數,它的倍數( 3 本身除外)如 6, 9, 12, 15, 也都是合數。因此,只要把所有質 數后面的倍數都劃去,剩下的就都是質數了。劃完后,還可以讓學生體會一下劃到幾的倍數就可以了。由于自然數是無限的,所以質數和合數也是無限的。本例中只要求學生列出 100 以內的質數表,這是因為較大的質數不常用。但 20 以內的質數用得較多,最好應提醒學生逐步記住。 到本節教材為止,已經出現了因數、倍數、奇數、偶數、質數、合數等概念,有些概念學生容易混淆,如學生往往把質數和奇數、合數和偶數混同起來,因此教學時應注意讓學生辨析這些概念。例如,可讓學生按照不同的標準對自然數進行分類,按是不是 2 的倍數可以把整數分成偶數 和奇數兩類,按約數的多少把非零自然數分成質數、合數和 1 三類。也可以結合學生自行整理的質數表,讓學生觀察和思考:是不是所有的質數都是奇數?引導學生舉出反例,如 2 是質數,但它不是奇數;也不是所有的奇數都是質數,如 9、 35 都是奇數,但都不是質數;也不是所有的偶數都是合數,如偶數 2 就不是合數。 3. 關于練習四中一些習題的說明和教學建議。 第 1 題,主要是讓學生對一些概念進一步加以區別。判斷時,要引導學生說明理由或舉出反例。如第( 3)小題,使學生進一步記住 1 既不是質數,也不是合數。第( 4)小題,因為偶數 2 是質 數,它和其他質數的和都是奇數,因此,題中的說法不正確。 第 3 題,讓學生根據條件求數,要求學生對 20 以內的質數比較熟悉。如第 1 小題,可以先通過 “ 兩個數的積是 21” 知道這兩個數是 21 的一對因數,這樣的因數只有3 和 7或 1和 21,而前者正好滿足 3 7=10 且都是質數。再如第 2 小題,滿足 “ 兩個質數之和是 20” 的有兩對質數: 3 和 17、 7 和 13,而后者又同時滿足 713=91 。 第 4 題,是帶著練習 2、 5、 3 的倍數的特征。 第 5 題,是用游戲的形式引出 “ 哥德巴赫猜想 ” ,使學生通過舉例的方式看到:大于 2 的偶數,可以表示為兩個質數之和。但舉例只能舉出有限個,是不是所有大于 2的偶數都滿足這一結論呢?從而引起學生繼續探求的興趣,也很自然地引出下面的閱讀材料。 因數與倍數參考資料 1 2、 5、 3的倍數的特征 1. 2 或 5 的倍數的特征:一個數的個位上的數是 2 或 5 的倍數,這個數就是 2 或 5 的倍數。 假設有一個數 anan-1a 1a0,那么, anan-1a 1a1=an10 n+an-110 n-1+a 110+a n =( an10 n-1+an-110 n-2+a 1) 10+a 0 因此,可以把這個數看成是兩個數的和,第一個加數( an10 n-1+an-110 n-2+a 1) 10 必定是 2 或 5 的倍數,所以只需看個位上的數 a0 是不是 2或 5的倍數就可以了。 例如, 4567 410 3 510 2 610 7 ( 410 2 510 6) 10 7 因為 7 不是 2 或 5 的倍數,因此, 4567 也不是 2 或 5 的倍數。 2. 3 或 9 的倍數的特征:一個數各位上的數之和是 3 或 9 的倍數,這個數就是 3 或 9 的倍數。 因此,可以把這個數看成是兩個數的和,第一個加數 必定是 3 或 9 的倍數,所以只需看第二個加數( an+an-1+a 1+a0)是否是 3 或 9 的倍數就可以了。 例如, 8325 81000 3100 210 5 8 ( 1000-1) 3 ( 100-1) 2 ( 10-1) ( 8 3 2 5) ( 8999 399 29 )( 8 3 2 5) ( 8111 311 21 ) 9 ( 8 3 2 5) 因為( 8111 311 21 ) 9 必定是 3 或 9 的倍數,所以只需看( 8 3 2 5)是否是 3 或 9 的倍數就可以了。 2. 質數表 判定一個數是不是質數,要根據質數的定義。一個較大的數,要 判定它是不是質數,往往要進行復雜計算,有時計算量是很大的。因此,人們把已經判定的一定范圍的質數,編制成表(如 1000 以內質數表、 4000 以內質數表等),以備查用。質數表通常是用篩法制成的。 3. 篩法 篩法,是求不超過自然數 n( n1)的所有質數的一種方法。據說是古希臘的埃拉托斯特尼( Eratosthenes,約公元前 274前 194 年)發明的,又稱埃拉托斯特尼篩子。 具體做法是:先把 n 個自然數按次序排列起來。 1 不是質數,也不是合數,要劃去。第二個數 2 是質數,留下來,而把 2 后面所有 2 的倍數都劃去。 2 后面第一 個沒劃去的數是 3,把3 留下,再把 3 后面所有 3 的倍數都劃去。 3 后面第一個沒劃去的數是 5,把 5 留下,再把5 后面所有 5 的倍數都劃去。這樣一直做下去,就會把不超過 n 的全部合數都篩掉,留下的就是不超過 n 的全部質數。因為希臘人是把數寫在涂蠟的板上,每劃去一個數,就在上面記以小點,尋求質數的工作完畢后,這許多小點就像一個篩子,所以就把埃拉托斯特尼的方法叫做 “ 埃拉托斯特尼篩 ” ,簡稱 “ 篩法 ” 。(另一種解釋是當時的數寫在紙草上,每劃去一個數,就把這個數挖去,尋求質數的工作完畢后,這許多小洞就像一個篩子。) 例如,用篩法找出不超 過 30 的一切質數: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 因此,不超過 30 的質數有: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,共 10 個。 三、長方體和正方體 (一)教學目標 1. 通過觀察和操作,認識長方體和正方體的特征以及它們的展開圖。 2. 通過實例,了解體積(包括容積 )的意義及度量單位(立方米、立方分米、立方厘米、升、毫升),會進行單位之間的換算,感受 1 m3、 1 dm3、 1 cm3以及 1 L、 1 ml 的實際意義。 3. 結合具體情境,探索并掌握長方體和正方體的體積和表面積的計算方法,并能運用所學知識解決一些簡單的實際問題。 4. 探索某些實物體積的測量方法。 (二)教材說明和教學建議 教材說明 1. 本單位的內容及地位和作用。 學生在第一學段已經初步認識了一些簡單的立體圖形,已經能夠識別出長方體、正方體、圓柱和球,本單元在此基礎上系統教 學長方體和正方體的有關知識。長方體和正方體是最基本的立體圖形。通過學習長方體和正方體,可以使學生對自己周圍的空間和空間中的物體形成初步的空間觀念,是進一步學習其他立體幾何圖形的基礎。另外,長方體和正方體體積的計算,也是學生形成體積的概念、掌握體積的計量單位和計算各種幾何形體體積的基礎。 本單元分三小節編排:長方體和正方體的認識,長方體和正方體的表面積,長方體和正方體的體積。在長方體和正方體的體積一節中,還介紹了容積的概念。同時,按照標準的要求,新增加了探索某些實物體積的測量方法。具體內容安排如下 : 2. 本單元教材的編排特點。 ( 1)注意聯系生活實際。 本單元非常重視與實際生活的聯系,主要體現在以下幾方面。( 1)圖形和概念的認識,結合學生所熟悉的事物進行。如長方體、正方體特征的認識,安排了讓學生說出紙巾盒、數學課本、粉筆盒等的形狀、長 、寬、高等練習。( 2)注意用所學的知識解決實際問題。本單元在各部分知識的學習中,都注意學以致用。如在長方體、正方體認識時,安排了計算俱樂部四周要安多長的彩燈線等練習;在學習表面積時,安排了大量的根據具體情況計算物體表面積的內容。( 3)選取具有鮮明時代特征的素材。如計算拼插奧運墻所用積木的體積,為 “ 神舟五號 ” 載人航天飛船返回艙的容積選取合適的容積單位等。即鞏固了所學數學知識,又激發了學生的民族自豪感。 ( 2)更加重視對概念的理解。 體積對學生來說是一個新概念,物體占有一定的空間對學生來說理解有 一定的困難。為此,教材先通過學生熟悉的 “ 烏鴉喝水 ” 的故事,以形象、生動的方式,讓學生初步感知物體占有空間。然后通過把石頭放入有水的玻璃杯里的實驗,讓學生進一步體驗物體確實占有空間,為引出體積概念做充分的感知準備。在學習容積時,計算不規則物體的體積,讓學生利用已建立的體積概念想到可以用排水法求得不規則物體的體積,加深對體積概念的認識。 ( 3)加強動手實踐、自主探索,讓學生經歷知識的形成過程。 本單元一些概念和計算方法都是通過學生動手操作、自主探索來學習的。如,體積單位,就是通過讓學生回顧舊知、 遷移類推引出來的。教材通過比較兩個不容易看出大小的長方體的體積,讓學生由比較物體的長度有統一的長度單位,比較物體的面積有統一的面積單位,想到比較物體的體積應有統一的體積單位,由此引出體積單位。又如,長方體體積的計算方法,先讓學生用 1 cm3 的正方體拼擺出不同的長方體,通過對這些長方體的相關數據的觀察、分析和歸納,自己發現長方體的體積與它的長、寬、高之間的內在關系,從而總結出長方體體積的計算公式。 ( 4)對一些內容進行了調整。 這部分教材根據以往教學實踐的情況,對一些內容進行了調整。如長方體、 正方體的引出,直接從實物中抽象出相應的圖形,不再從與平面圖形的對比中引出。再如,由于體積和表面積等概念注意從各方面來進行認識,所以體積和表面積不再安排例題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論