




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省杭州西湖區四校聯考2021-2022學年十校聯考最后數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.把一個多邊形紙片沿一條直線截下一個三角形后,變成一個18邊形,則原多邊形紙片的邊數不可能是()A.16 B.17 C.18 D.192.如圖,將△ABC繞點C順時針旋轉,點B的對應點為點E,點A的對應點為點D,當點E恰好落在邊AC上時,連接AD,若∠ACB=30°,則∠DAC的度數是()A. B. C. D.3.已知一元二次方程有一個根為2,則另一根為A.2 B.3 C.4 D.84.如圖,三棱柱ABC﹣A1B1C1的側棱長和底面邊長均為2,且側棱AA1⊥底面ABC,其正(主)視圖是邊長為2的正方形,則此三棱柱側(左)視圖的面積為()A. B. C. D.45.tan45o的值為()A. B.1 C. D.6.如圖,E為平行四邊形ABCD的邊AB延長線上的一點,且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()
A.30 B.27 C.14 D.327.若式子在實數范圍內有意義,則x的取值范圍是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣18.將拋物線y=x2先向左平移2個單位,再向下平移3個單位后所得拋物線的解析式為()A.y=(x﹣2)2+3B.y=(x﹣2)2﹣3C.y=(x+2)2+3D.y=(x+2)2﹣39.如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發,沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數圖象大致是()A. B. C. D.10.下列“數字圖形”中,既是軸對稱圖形,又是中心對稱圖形的有()A.1個B.2個C.3個D.4個二、填空題(本大題共6個小題,每小題3分,共18分)11.我們知道:四邊形具有不穩定性.如圖,在平面直角坐標系xOy中,矩形ABCD的邊AB在x軸上,,,邊AD長為5.現固定邊AB,“推”矩形使點D落在y軸的正半軸上(落點記為),相應地,點C的對應點的坐標為_______.12.計算:(π﹣3)0+(﹣)﹣1=_____.13.從長度分別是3,4,5的三條線段中隨機抽出一條,與長為2,3的兩條線段首尾順次相接,能構成三角形的概率是_______.14.2017年5月5日我國自主研發的大型飛機C919成功首飛,如圖給出了一種機翼的示意圖,用含有m、n的式子表示AB的長為______.15.如圖,直線,點A1坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2;再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,…,按照此做法進行下去,點A8的坐標為__________.16.已知兩圓相切,它們的圓心距為3,一個圓的半徑是4,那么另一個圓的半徑是_______.三、解答題(共8題,共72分)17.(8分)如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延長線點F.問:圖中△APD與哪個三角形全等?并說明理由;求證:△APE∽△FPA;猜想:線段PC,PE,PF之間存在什么關系?并說明理由.18.(8分)先化簡,再計算:其中.19.(8分)如圖,已知二次函數的圖象與軸交于,兩點在左側),與軸交于點,頂點為.(1)當時,求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對稱軸左側上存在一點,使,求點的坐標;(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點為線段上一動點,軸交新拋物線于點,延長至,且,若的外角平分線交點在新拋物線上,求點坐標.20.(8分)如圖,四邊形ABCD的四個頂點分別在反比例函數與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為1.當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.四邊形ABCD能否成為正方形?若能,求此時m,n之間的數量關系;若不能,試說明理由.21.(8分)西安匯聚了很多人們耳熟能詳的陜西美食.李華和王濤同時去選美食,李華準備在“肉夾饃(A)、羊肉泡饃(B)、麻醬涼皮(C)、(biang)面(D)”這四種美食中選擇一種,王濤準備在“秘制涼皮(E)、肉丸胡辣湯(F)、葫蘆雞(G)、水晶涼皮(H)”這四種美食中選擇一種.(1)求李華選擇的美食是羊肉泡饃的概率;(2)請用畫樹狀圖或列表的方法,求李華和王濤選擇的美食都是涼皮的概率.22.(10分)為做好防汛工作,防汛指揮部決定對某水庫的水壩進行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數據:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)23.(12分)如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF=12(1)求證:直線BF是⊙O的切線;(2)若AB=5,sin∠CBF=5524.綜合與探究:如圖1,拋物線y=﹣x2+x+與x軸分別交于A、B兩點(點A在點B的左側),與y軸交于C點.經過點A的直線l與y軸交于點D(0,﹣).(1)求A、B兩點的坐標及直線l的表達式;(2)如圖2,直線l從圖中的位置出發,以每秒1個單位的速度沿x軸的正方向運動,運動中直線l與x軸交于點E,與y軸交于點F,點A關于直線l的對稱點為A′,連接FA′、BA′,設直線l的運動時間為t(t>0)秒.探究下列問題:①請直接寫出A′的坐標(用含字母t的式子表示);②當點A′落在拋物線上時,求直線l的運動時間t的值,判斷此時四邊形A′BEF的形狀,并說明理由;(3)在(2)的條件下,探究:在直線l的運動過程中,坐標平面內是否存在點P,使得以P,A′,B,E為頂點的四邊形為矩形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
一個n邊形剪去一個角后,剩下的形狀可能是n邊形或(n+1)邊形或(n-1)邊形.故當剪去一個角后,剩下的部分是一個18邊形,則這張紙片原來的形狀可能是18邊形或17邊形或19邊形,不可能是16邊形.故選A.【點睛】此題主要考查了多邊形,減去一個角的方法可能有三種:經過兩個相鄰點,則少了一條邊;經過一個頂點和一邊,邊數不變;經過兩條鄰邊,邊數增加一條.2、D【解析】
由題意知:△ABC≌△DEC,∴∠ACB=∠DCE=30°,AC=DC,∴∠DAC=(180°?∠DCA)÷2=(180°?30°)÷2=75°.故選D.【點睛】本題主要考查了旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等.3、C【解析】試題分析:利用根與系數的關系來求方程的另一根.設方程的另一根為α,則α+2=6,解得α=1.考點:根與系數的關系.4、B【解析】分析:易得等邊三角形的高,那么左視圖的面積=等邊三角形的高×側棱長,把相關數值代入即可求解.詳解:∵三棱柱的底面為等邊三角形,邊長為2,作出等邊三角形的高CD后,∴等邊三角形的高CD=,∴側(左)視圖的面積為2×,故選B.點睛:本題主要考查的是由三視圖判斷幾何體.解決本題的關鍵是得到求左視圖的面積的等量關系,難點是得到側面積的寬度.5、B【解析】
解:根據特殊角的三角函數值可得tan45o=1,故選B.【點睛】本題考查特殊角的三角函數值.6、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點睛】本題考查了平行四邊形的性質,相似三角形的判定與性質等,熟記相似三角形的面積等于相似比的平方是解題的關鍵.7、A【解析】
直接利用二次根式有意義的條件分析得出答案.【詳解】∵式子在實數范圍內有意義,∴x﹣1>0,解得:x>1.故選:A.【點睛】此題主要考查了二次根式有意義的條件,正確把握定義是解題關鍵.8、D【解析】
先得到拋物線y=x2的頂點坐標(0,0),再根據點平移的規律得到點(0,0)平移后的對應點的坐標為(-2,-1),然后根據頂點式寫出平移后的拋物線解析式.【詳解】解:拋物線y=x2的頂點坐標為(0,0),把點(0,0)先向左平移2個單位,再向下平移1個單位得到對應點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.故選:D.【點睛】本題考查了二次函數與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通常可利用兩種方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.9、B【解析】解:當點P在AD上時,△ABP的底AB不變,高增大,所以△ABP的面積S隨著時間t的增大而增大;當點P在DE上時,△ABP的底AB不變,高不變,所以△ABP的面積S不變;當點P在EF上時,△ABP的底AB不變,高減小,所以△ABP的面積S隨著時間t的減小而減小;當點P在FG上時,△ABP的底AB不變,高不變,所以△ABP的面積S不變;當點P在GB上時,△ABP的底AB不變,高減小,所以△ABP的面積S隨著時間t的減小而減小;故選B.10、C【解析】
根據軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】第一個圖形不是軸對稱圖形,是中心對稱圖形;第二、三、四個圖形是軸對稱圖形,也是中心對稱圖形;故選:C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】分析:根據勾股定理,可得,根據平行四邊形的性質,可得答案.詳解:由勾股定理得:=,即(0,4).矩形ABCD的邊AB在x軸上,∴四邊形是平行四邊形,A=B,=AB=4-(-3)=7,與的縱坐標相等,∴(7,4),故答案為(7,4).點睛:本題考查了多邊形,利用平行四邊形的性質得出A=B,=AB=4-(-3)=7是解題的關鍵.12、-1【解析】
先計算0指數冪和負指數冪,再相減.【詳解】(π﹣3)0+(﹣)﹣1,=1﹣3,=﹣1,故答案是:﹣1.【點睛】考查了0指數冪和負指數冪,解題關鍵是運用任意數的0次冪為1,a-1=.13、【解析】共有3種等可能的結果,它們是:3,2,3;4,2,3;5,2,3;其中三條線段能夠成三角形的結果為2,所以三條線段能構成三角形的概率=.故答案為.14、【解析】
過點C作CE⊥CF延長BA交CE于點E,先求得DF的長,可得到AE的長,最后可求得AB的長.【詳解】解:延長BA交CE于點E,設CF⊥BF于點F,如圖所示.在Rt△BDF中,BF=n,∠DBF=30°,∴.在Rt△ACE中,∠AEC=90°,∠ACE=45°,∴AE=CE=BF=n,∴.故答案為:.【點睛】此題考查解直角三角形的應用,解題的關鍵在于做輔助線.15、(128,0)【解析】
∵點A1坐標為(1,0),且B1A1⊥x軸,∴B1的橫坐標為1,將其橫坐標代入直線解析式就可以求出B1的坐標,就可以求出A1B1的值,OA1的值,根據銳角三角函數值就可以求出∠xOB3的度數,從而求出OB1的值,就可以求出OA2值,同理可以求出OB2、OB3…,從而尋找出點A2、A3…的坐標規律,最后求出A8的坐標.【詳解】點坐標為(1,0),
軸
點的橫坐標為1,且點在直線上
在中由勾股定理,得
,
在中,
.
.
.
.
故答案為.【點睛】本題是一道一次函數的綜合試題,也是一道規律試題,考查了直角三角形的性質,特別是所對的直角邊等于斜邊的一半的運用,點的坐標與函數圖象的關系.16、1或1【解析】
由兩圓相切,它們的圓心距為3,其中一個圓的半徑為4,即可知這兩圓內切,然后分別從若大圓的半徑為4與若小圓的半徑為4去分析,根據兩圓位置關系與圓心距d,兩圓半徑R,r的數量關系間的聯系即可求得另一個圓的半徑.【詳解】∵兩圓相切,它們的圓心距為3,其中一個圓的半徑為4,∴這兩圓內切,∴若大圓的半徑為4,則另一個圓的半徑為:4-3=1,若小圓的半徑為4,則另一個圓的半徑為:4+3=1.故答案為:1或1【點睛】此題考查了圓與圓的位置關系.此題難度不大,解題的關鍵是注意掌握兩圓位置關系與圓心距d,兩圓半徑R,r的數量關系間的聯系,注意分類討論思想的應用.三、解答題(共8題,共72分)17、(1)△CPD.理由參見解析;(2)證明參見解析;(3)PC2=PE?PF.理由參見解析.【解析】
(1)根據菱形的性質,利用SAS來判定兩三角形全等;(2)根據第一問的全等三角形結論及已知,利用兩組角相等則兩三角形相似來判定即可;(3)根據相似三角形的對應邊成比例及全等三角形的對應邊相等即可得到結論.【詳解】解:(1)△APD≌△CPD.理由:∵四邊形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.又∵PD=PD,∴△APD≌△CPD(SAS).(2)∵△APD≌△CPD,∴∠DAP=∠DCP,∵CD∥AB,∴∠DCF=∠DAP=∠CFB,又∵∠FPA=∠FPA,∴△APE∽△FPA(兩組角相等則兩三角形相似).(3)猜想:PC2=PE?PF.理由:∵△APE∽△FPA,∴即PA2=PE?PF.∵△APD≌△CPD,∴PA=PC.∴PC2=PE?PF.【點睛】本題考查1.相似三角形的判定與性質;2.全等三角形的判定;3.菱形的性質,綜合性較強.18、;【解析】
根據分式的化簡求值,先把分子分母因式分解,再算乘除,通分后計算減法,約分化簡,最后代入求值即可.【詳解】解:====當時,原式=.【點睛】此題主要考查了分式的化簡求值,把分式的除法化為乘法,然后約分是解題關鍵.19、(1)4;(2),;(3).【解析】
(1)過點D作DE⊥x軸于點E,求出二次函數的頂點D的坐標,然后求出A、B、C的坐標,然后根據即可得出結論;(2)設點是第二象限拋物線對稱軸左側上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,證出,列表比例式,并找出關于t的方程即可得出結論;(3)判斷點D在直線上,根據勾股定理求出DH,即可求出平移后的二次函數解析式,設點,,過點作于,于,軸于,根據勾股定理求出AG,聯立方程即可求出m、n,從而求出結論.【詳解】解:(1)過點D作DE⊥x軸于點E當時,得到,頂點,∴DE=1由,得,;令,得;,,,,OC=3.(2)如圖1,設點是第二象限拋物線對稱軸左側上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,由翻折得:,;,,軸,,,,由勾股定理得:,,,,,,,解得:(不符合題意,舍去),;,.(3)原拋物線的頂點在直線上,直線交軸于點,如圖2,過點作軸于,;由題意,平移后的新拋物線頂點為,解析式為,設點,,則,,,過點作于,于,軸于,,,、分別平分,,,點在拋物線上,,根據題意得:解得:【點睛】此題考查的是二次函數的綜合大題,難度較大,掌握二次函數平移規律、二次函數的圖象及性質、相似三角形的判定及性質和勾股定理是解決此題的關鍵.20、(1)①;②四邊形是菱形,理由見解析;(2)四邊形能是正方形,理由見解析,m+n=32.【解析】
(1)①先確定出點A,B坐標,再利用待定系數法即可得出結論;
②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結論;
(2)先確定出B(1,),D(1,),進而求出點P的坐標,再求出A,C坐標,最后用AC=BD,即可得出結論.【詳解】(1)①如圖1,,反比例函數為,當時,,,當時,,,,設直線的解析式為,,,直線的解析式為;②四邊形是菱形,理由如下:如圖2,由①知,,軸,,點是線段的中點,,當時,由得,,由得,,,,,,四邊形為平行四邊形,,四邊形是菱形;(2)四邊形能是正方形,理由:當四邊形是正方形,記,的交點為,,當時,,,,,,,,,,.【點睛】此題是反比例函數綜合題,主要考查了待定系數法,平行四邊形的判定,菱形的判定和性質,正方形的性質,判斷出四邊形ABCD是平行四邊形是解本題的關鍵.21、(1);(2)見解析.【解析】
(1)直接根據概率的意義求解即可;(2)列出表格,再找到李華和王濤同時選擇的美食都是涼皮的情況數,利用概率公式即可求得答案.【詳解】解:(1)李華選擇的美食是羊肉泡饃的概率為;(2)列表得:EFGHAAEAFAGAHBBEBFBGBHCCECFCGCHDDEDFDGDH由列表可知共有16種情況,其中李華和王濤選擇的美食都是涼皮的結果數為2,所以李華和王濤選擇的美食都是涼皮的概率為=.【點睛】本題涉及樹狀圖或列表法的相關知識,難度中等,考查了學生的分析能力.用到的知識點為:概率=所求情況數與總情況數之比.22、水壩原來的高度為12米【解析】試題分析:設BC=x米,用x表示出AB的長,利用坡度的定義得到BD=BE,進而列出x的方程,求出x的值即可.試題解析:設BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+,解得x=12,即BC=12,答:水壩原來的高度為12米..考點:解直角三角形的應用,坡度.23、(1)證明見解析;(2)BC=25;BF=【解析】(1)連接AE,利用直徑所對的圓周角是直角,從而判定直角三角形,利用直角三角形兩銳角相等得到直角,從而證明∠ABF=90°.(2)利用已知條件證得△AGC∽△ABF,利用比例式求得線段的長即可.(1)證明:連接AE,∵AB是⊙O的直徑,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直徑,∴直線BF是⊙O的切線.(2)解:過點C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB?sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴=.∴BF==.24、(1)A(﹣1,0),B(3,0),y=﹣x﹣;(2)①A′(t﹣1,t);②A′BEF為菱形,見解析;(3)存在,P點坐標為(,)或(,﹣).【解析】
(1)通過解方程﹣x2+x+=0得A(?1,0),B(3,0),然后利用待定系數法確定直線l的解析式;(2)①作A′H⊥x軸于H,如圖2,利用OA=1,OD=得到∠OAD=60°,再利用平移和對稱的性質得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根據含30度的直角三角形三邊的關系表示出A′H,EH即可得到A′的坐標;②把A′(t?1,t)代入y=?x2+x+得?(t?1)2+(t?1)+=t,解方程得到t=2,此時A′點的坐標為(2,),E(1,0),然后通過計算得到AF=BE=2,A′F∥BE,從而判斷四邊形A′BEF為平行四邊形,然后加上EF=BE可判定四邊形A′BEF為菱形;(3)討論:當A′B⊥BE時,四邊形A′BEP為矩形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 涂料行業政策影響分析考核試卷
- 新能源技術項目政策補貼咨詢考核試卷
- 激光切割技術在半導體行業的應用拓展考核試卷
- Dcker容器技術應用 課件 項目4 創建Dcker鏡像
- 跨境電商理論與實務-課件全套 邢孝兵 第1-10章 跨境電子商務基礎 -跨境電子商務營銷
- 2025年-陜西省安全員-B證考試題庫附答案
- 2025貴州省建筑安全員-B證考試題庫附答案
- 2025年吉林建筑安全員-A證考試題庫附答案
- 北京市朝陽區2025屆高三下學期一模試題 歷史 含答案
- 安徽省安慶市懷寧縣新安中學2024-2025學年高二下學期期中考試數學模擬試卷(含答案)
- 匯率超調模型
- 減數分裂和受精作用-2025年高考生物一輪復習練習(新人教新高考)
- 上海市2024年中考物理試卷
- 2024年天津能源投資集團科技限公司招聘高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 少兒口才精彩課件
- 消費者權益保護法【共54張課件】
- 2025屆高考政治一輪復習統編版選擇性必修三《邏輯與思維》答題技巧
- 中國鹽業集團有限公司筆試題目
- 交通施工導行方案
- JT-T-1184-2018城市公共汽電車企業運營成本測算規范
- JGJ107-2016鋼筋機械連接技術規程
評論
0/150
提交評論