




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年四川成都青羊區外國語學校高三第一次調研測試數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,將點繞原點逆時針旋轉到點,設直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.2.已知是虛數單位,若,則()A. B.2 C. D.103.拋物線C:y2=2px的焦點F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.4.已知奇函數是上的減函數,若滿足不等式組,則的最小值為()A.-4 B.-2 C.0 D.45.已知復數,則對應的點在復平面內位于()A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.7.等比數列的各項均為正數,且,則()A.12 B.10 C.8 D.8.已知數列,,,…,是首項為8,公比為得等比數列,則等于()A.64 B.32 C.2 D.49.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.410.記等差數列的公差為,前項和為.若,,則()A. B. C. D.11.如圖,圓是邊長為的等邊三角形的內切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.12.設,為非零向量,則“存在正數,使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.在中,內角的對邊長分別為,已知,且,則_________.14.在中,角,,的對邊長分別為,,,滿足,,則的面積為__.15.已知函數,(其中e為自然對數的底數),若關于x的方程恰有5個相異的實根,則實數a的取值范圍為________.16.若,則=______,=______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)數列滿足,是與的等差中項.(1)證明:數列為等比數列,并求數列的通項公式;(2)求數列的前項和.18.(12分)已知函數的定義域為,且滿足,當時,有,且.(1)求不等式的解集;(2)對任意,恒成立,求實數的取值范圍.19.(12分)隨著時代的發展,A城市的競爭力、影響力日益卓著,這座創新引領型城市有望踏上向“全球城市”發起“沖擊”的新征程.A城市的活力與包容無不吸引著無數懷揣夢想的年輕人前來發展,目前A城市的常住人口大約為1300萬.近日,某報社記者作了有關“你來A城市發展的理由”的調查問卷,參與調查的對象年齡層次在25~44歲之間.收集到的相關數據如下:來A城市發展的理由人數合計自然環境1.森林城市,空氣清新2003002.降水充足,氣候怡人100人文環境3.城市服務到位1507004.創業氛圍好3005.開放且包容250合計10001000(1)根據以上數據,預測400萬25~44歲年齡的人中,選擇“創業氛圍好”來A城市發展的有多少人;(2)從所抽取選擇“自然環境”作為來A城市發展的理由的300人中,利用分層抽樣的方法抽取6人,從這6人中再選取3人發放紀念品.求選出的3人中至少有2人選擇“森林城市,空氣清新”的概率;(3)在選擇“自然環境”作為來A城市發展的理由的300人中有100名男性;在選擇“人文環境”作為來A城市發展的理由的700人中有400名男性;請填寫下面列聯表,并判斷是否有的把握認為性別與“自然環境”或“人文環境”的選擇有關?自然環境人文環境合計男女合計附:,.P()0.0500.0100.001k3.8416.63510.82820.(12分)已知,且.(1)請給出的一組值,使得成立;(2)證明不等式恒成立.21.(12分)在中,設、、分別為角、、的對邊,記的面積為,且.(1)求角的大小;(2)若,,求的值.22.(10分)已知橢圓()的離心率為,且經過點.(1)求橢圓的方程;(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關于軸對稱?若存在,求出點的坐標;若不存在,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
設直線直線與軸正半軸所成的最小正角為,由任意角的三角函數的定義可以求得的值,依題有,則,利用誘導公式即可得到答案.【詳解】如圖,設直線直線與軸正半軸所成的最小正角為因為點在角的終邊上,所以依題有,則,所以,故選:A【點睛】本題考查三角函數的定義及誘導公式,屬于基礎題.2、C【解析】
根據復數模的性質計算即可.【詳解】因為,所以,,故選:C【點睛】本題主要考查了復數模的定義及復數模的性質,屬于容易題.3、A【解析】
先由題和拋物線的性質求得點P的坐標和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點F1,0,準線與x軸交點F'(-1,0),雙曲線半焦距c=1,設點Q(-1,y)ΔFPQ是以點P為直角頂點的等腰直角三角形,即PF所以PQ⊥拋物線的準線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質以及雙曲線的定義是解題的關鍵,屬于中檔題.4、B【解析】
根據函數的奇偶性和單調性得到可行域,畫出可行域和目標函數,根據目標函數的幾何意義平移得到答案.【詳解】奇函數是上的減函數,則,且,畫出可行域和目標函數,,即,表示直線與軸截距的相反數,根據平移得到:當直線過點,即時,有最小值為.故選:.【點睛】本題考查了函數的單調性和奇偶性,線性規劃問題,意在考查學生的綜合應用能力,畫出圖像是解題的關鍵.5、A【解析】
利用復數除法運算化簡,由此求得對應點所在象限.【詳解】依題意,對應點為,在第一象限.故選A.【點睛】本小題主要考查復數除法運算,考查復數對應點的坐標所在象限,屬于基礎題.6、D【解析】
由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質,直線與圓相切的性質,離心率的求法,屬于中檔題.7、B【解析】
由等比數列的性質求得,再由對數運算法則可得結論.【詳解】∵數列是等比數列,∴,,∴.故選:B.【點睛】本題考查等比數列的性質,考查對數的運算法則,掌握等比數列的性質是解題關鍵.8、A【解析】
根據題意依次計算得到答案.【詳解】根據題意知:,,故,,.故選:.【點睛】本題考查了數列值的計算,意在考查學生的計算能力.9、B【解析】
解出,分別代入選項中的值進行驗證.【詳解】解:,.當時,,此時不成立.當時,,此時成立,符合題意.故選:B.【點睛】本題考查了不等式的解法,考查了集合的關系.10、C【解析】
由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.【點睛】本題考查等差數列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.11、C【解析】
建立坐標系,寫出相應的點坐標,得到的表達式,進而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標系,設內切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據三角形面積公式得到,可得到內切圓的半徑為可得到點的坐標為:故得到故得到,故最大值為:2.故答案為C.【點睛】這個題目考查了向量標化的應用,以及參數方程的應用,以向量為載體求相關變量的取值范圍,是向量與函數、不等式、三角函數等相結合的一類綜合問題.通過向量的運算,將問題轉化為解不等式或求函數值域,是解決這類問題的一般方法.12、D【解析】
充分性中,由向量數乘的幾何意義得,再由數量積運算即可說明成立;必要性中,由數量積運算可得,不一定有正數,使得,所以不成立,即可得答案.【詳解】充分性:若存在正數,使得,則,,得證;必要性:若,則,不一定有正數,使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數量積的運算,向量數乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】∵∴根據正弦定理與余弦定理可得:,即∵∴∵∴故答案為414、.【解析】
由二次方程有解的條件,結合輔助角公式和正弦函數的值域可求,進而可求,然后結合余弦定理可求,代入,計算可得所求.【詳解】解:把看成關于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負的舍去),.故答案為.【點睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應用,屬于中檔題.15、【解析】
作出圖象,求出方程的根,分類討論的正負,數形結合即可.【詳解】當時,令,解得,所以當時,,則單調遞增,當時,,則單調遞減,當時,單調遞減,且,作出函數的圖象如圖:(1)當時,方程整理得,只有2個根,不滿足條件;(2)若,則當時,方程整理得,則,,此時各有1解,故當時,方程整理得,有1解同時有2解,即需,,因為(2),故此時滿足題意;或有2解同時有1解,則需,由(1)可知不成立;或有3解同時有0解,根據圖象不存在此種情況,或有0解同時有3解,則,解得,故,(3)若,顯然當時,和均無解,當時,和無解,不符合題意.綜上:的范圍是,故答案為:,【點睛】本題主要考查了函數零點與函數圖象的關系,考查利用導數研究函數的單調性,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.16、10【解析】
①根據換底公式計算即可得解;②根據同底對數加法法則,結合①的結果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點睛】此題考查對數的基本運算,涉及換底公式和同底對數加法運算,屬于基礎題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析,(2)【解析】
(1)根據等差中項的定義得,然后構造新等比數列,寫出的通項即可求(2)根據(1)的結果,分組求和即可【詳解】解:(1)由已知可得,即,可化為,故數列是以為首項,2為公比的等比數列.即有,所以.(2)由(1)知,數列的通項為:,故.【點睛】考查等差中項的定義和分組求和的方法;中檔題.18、(1);(2).【解析】
(1)利用定義法求出函數在上單調遞增,由和,求出,求出,運用單調性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調遞增,恒成立,設,利用三角恒等變換化簡,結合恒成立的條件,構造新函數,利用單調性和最值,求出實數的取值范圍.【詳解】(1)設,,所以函數在上單調遞增,又因為和,則,所以得解得,即,故的取值范圍為;(2)由于恒成立,恒成立,設,則,令,則,所以在區間上單調遞增,所以,根據條件,只要,所以.【點睛】本題考查利用定義法求函數的單調性和利用單調性求不等式的解集,考查不等式恒成立問題,還運用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉化思想和解題能力.19、(1)(萬)(2)(3)填表見解析;有的把握認為性別與“自然環境”或“人文環境”的選擇有關【解析】
(1)在1000個樣本中選擇“創業氛圍好”來A城市發展的有300個,根據頻率公式即可求得結果.(2)由分層抽樣的知識可得,抽取6人中,4人選擇“森林城市,空氣清新”,2人選擇“降水充足,氣候怡人”求出對應的基本事件數,即可求得結果.(3)計算的值,對照臨界值表可得答案.【詳解】(1)(萬)(2)從所抽取選擇“自然環境”作為來A城市發展理由的300人中,利用分層抽樣的方法抽取6人,其中4人是選擇“森林城市,空氣清新”,2人是選擇“降水充足,氣候怡人”.記事件A為選出的3人中至少有2人選擇“森林城市,空氣清新”,則,.(3)列聯表如下自然環境人文環境合計男100400500女200300500合計3007001000,所以有的把握認為性別與“自然環境”或“人文環境”的選擇有關.【點睛】本題主要考查獨立性檢測的相關知識、分層抽樣與古典概念計算概率、考查學生的綜合分析與計算能力,難度較易.20、(1)(答案不唯一)(2)證明見解析【解析】
(1)找到一組符合條件的值即可;(2)由可得,整理可得,兩邊同除可得,再由可得,兩邊同時加可得,即可得證.【詳解】解析:(1)(答案不唯一)(2)證明:由題意可知,,因為,所以.所以,即.因為,所以,因為,所以,所以.【點睛】考查不等式的證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇財經職業技術學院《疫苗與健康》2023-2024學年第二學期期末試卷
- 鄭州工業安全職業學院《變頻器原理及應用》2023-2024學年第二學期期末試卷
- 上海農林職業技術學院《現代纖維藝術設計》2023-2024學年第一學期期末試卷
- 蘭州理工大學《函數式程序設計》2023-2024學年第二學期期末試卷
- 昭通職業學院《交通統計學》2023-2024學年第一學期期末試卷
- 江西楓林涉外經貿職業學院《本科畢業論文寫作范式與技巧》2023-2024學年第二學期期末試卷
- 錦州醫科大學《體育散打》2023-2024學年第二學期期末試卷
- 遼寧理工職業大學《農村公共管理學》2023-2024學年第二學期期末試卷
- 手現房買賣定金合同
- 臨時勞務合同
- 2024年黑龍江龍東地區初中畢業學業統一考試中考物理試卷(真題+答案解析)
- 人教版音樂三年級下冊第五單元 打字機 教案
- 國際物流專員聘用協議
- 《探究杠桿的平衡條件》說課稿(全國實驗說課大賽獲獎案例)
- 2024年廣東省公需課《百縣千鎮萬村高質量發展工程與城鄉區域協調發展》考試答案
- 2024年江西省初中學業水平考試數學試題卷
- 《小蝦》學習任務群教學課件
- 臨床研究質量管理方案
- 海南紅塔卷煙有限責任公司招聘考試試題及答案
- 七年級數學人教版下冊第二單元測試卷-實數
- 2024年海南省財金集團有限公司招聘筆試沖刺題(帶答案解析)
評論
0/150
提交評論