




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省南京鼓樓區金陵匯文2023-2024學年中考數學模擬精編試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知AB和CD是⊙O的兩條等弦.OM⊥AB,ON⊥CD,垂足分別為點M、N,BA、DC的延長線交于點P,聯結OP.下列四個說法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正確的個數是()A.1 B.2 C.3 D.42.不等式組的解集在數軸上表示正確的是()A. B.C. D.3.下列計算正確的是()A.x4?x4=x16B.(a+b)2=a2+b2C.16=±4D.(a6)2÷(a4)3=14.下表是某校合唱團成員的年齡分布.年齡/歲13141516頻數515x對于不同的x,下列關于年齡的統計量不會發生改變的是()A.眾數、中位數 B.平均數、中位數 C.平均數、方差 D.中位數、方差5.某春季田徑運動會上,參加男子跳高的15名運動員的成績如下表所示:成績人數這些運動員跳高成績的中位數是()A. B. C. D.6.已知一個多邊形的每一個外角都相等,一個內角與一個外角的度數之比是3:1,這個多邊形的邊數是A.8 B.9 C.10 D.127.如圖,平行四邊形ABCD中,E,F分別為AD,BC邊上的一點,增加下列條件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD8.如圖,平面直角坐標中,點A(1,2),將AO繞點A逆時針旋轉90°,點O的對應點B恰好落在雙曲線y=kxA.2 B.3 C.4 D.69.如圖,在平面直角坐標系中,以A(-1,0),B(2,0),C(0,1)為頂點構造平行四邊形,下列各點中不能作為平行四邊形頂點坐標的是()A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)10.如圖,四邊形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中點,則CM的長為()A. B.2 C. D.3二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式:=.12.如圖,在正方形網格中,線段A′B′可以看作是線段AB經過若干次圖形的變化(平移、旋轉、軸對稱)得到的,寫出一種由線段AB得到線段A′B′的過程______13.方程=1的解是_____.14.我們知道:1+3=4,1+3+5=9,1+3+5+7=16,…,觀察下面的一列數:-1,2,,-3,4,-5,6…,將這些數排列成如圖的形式,根據其規律猜想,第20行從左到右第3個數是.15.如圖,矩形ABCD中,BC=6,CD=3,以AD為直徑的半圓O與BC相切于點E,連接BD則陰影部分的面積為____(結果保留π)16.如圖,等邊三角形AOB的頂點A的坐標為(﹣4,0),頂點B在反比例函數(x<0)的圖象上,則k=.三、解答題(共8題,共72分)17.(8分)某單位為了擴大經營,分四次向社會進行招工測試,測試后對成績合格人數與不合格人數進行統計,并繪制成如圖所示的不完整的統計圖.(1)測試不合格人數的中位數是.(2)第二次測試合格人數為50人,到第四次測試合格人數為每次測試不合格人數平均數的2倍少18人,若這兩次測試的平均增長率相同,求平均增長率;(3)在(2)的條件下補全條形統計圖和扇形統計圖.18.(8分)某中學為了解學生平均每天“誦讀經典”的時間,在全校范圍內隨機抽查了部分學生進行調查統計(設每天的誦讀時間為分鐘),將調查統計的結果分為四個等級:Ⅰ級、Ⅱ級、Ⅲ級、Ⅳ級.將收集的數據繪制成如下兩幅不完整的統計圖.請根據圖中提供的信息,解答下列問題:()請補全上面的條形圖.()所抽查學生“誦讀經典”時間的中位數落在__________級.()如果該校共有名學生,請你估計該校平均每天“誦讀經典”的時間不低于分鐘的學生約有多少人?19.(8分)如圖,在△ABC中,D為AC上一點,且CD=CB,以BC為直徑作☉O,交BD于點E,連接CE,過D作DFAB于點F,∠BCD=2∠ABD.(1)求證:AB是☉O的切線;(2)若∠A=60°,DF=,求☉O的直徑BC的長.20.(8分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.(1)求小明選擇去白鹿原游玩的概率;(2)用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.21.(8分)如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為(a,0),點C的坐標為(0,b),且a、b滿足+|b﹣6|=0,點B在第一象限內,點P從原點出發,以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動.a=,b=,點B的坐標為;當點P移動4秒時,請指出點P的位置,并求出點P的坐標;在移動過程中,當點P到x軸的距離為5個單位長度時,求點P移動的時間.22.(10分)第二十四屆冬季奧林匹克運動會將于2022年2月4日至2月20日在北京舉行,北京將成為歷史上第一座既舉辦過夏奧會又舉辦過冬奧會的城市.某區舉辦了一次冬奧知識網上答題競賽,甲、乙兩校各有名學生參加活動,為了解這兩所學校的成績情況,進行了抽樣調查,過程如下,請補充完整.[收集數據]從甲、乙兩校各隨機抽取名學生,在這次競賽中他們的成績如下:甲:乙:[整理、描述數據]按如下分數段整理、描述這兩組樣本數據:學校人數成績甲乙(說明:優秀成績為,良好成績為合格成績為.)[分析數據]兩組樣本數據的平均分、中位數、眾數如下表所示:學校平均分中位數眾數甲乙其中.[得出結論](1)小明同學說:“這次競賽我得了分,在我們學校排名屬中游略偏上!”由表中數據可知小明是_校的學生;(填“甲”或“乙”)(2)張老師從乙校隨機抽取--名學生的競賽成績,試估計這名學生的競賽成績為優秀的概率為_;(3)根據以上數據推斷一所你認為競賽成績較好的學校,并說明理由:;(至少從兩個不同的角度說明推斷的合理性)23.(12分)關于x的一元二次方程ax2+bx+1=1.(1)當b=a+2時,利用根的判別式判斷方程根的情況;(2)若方程有兩個相等的實數根,寫出一組滿足條件的a,b的值,并求此時方程的根.24.從化市某中學初三(1)班數學興趣小組為了解全校800名初三學生的“初中畢業選擇升學和就業”情況,特對本班50名同學們進行調查,根據全班同學提出的3個主要觀點:A高中,B中技,C就業,進行了調查(要求每位同學只選自己最認可的一項觀點);并制成了扇形統計圖(如圖).請回答以下問題:(1)該班學生選擇觀點的人數最多,共有人,在扇形統計圖中,該觀點所在扇形區域的圓心角是度.(2)利用樣本估計該校初三學生選擇“中技”觀點的人數.(3)已知該班只有2位女同學選擇“就業”觀點,如果班主任從該觀點中,隨機選取2位同學進行調查,那么恰好選到這2位女同學的概率是多少?(用樹形圖或列表法分析解答).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】如圖連接OB、OD;∵AB=CD,∴=,故①正確∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正確,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正確,∵AM=CN,∴PA=PC,故③正確,故選D.2、C【解析】
分別求出每一個不等式的解集,根據口訣:大小小大中間找確定不等式組的解集,在數軸上表示時由包括該數用實心點、不包括該數用空心點判斷即可.【詳解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式組的解集為:2<x≤4,故選:C.【點睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.3、D【解析】試題分析:x4x4=x8(同底數冪相乘,底數不變,指數相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算術平方根取正號);(a6)考點:1、冪的運算;2、完全平方公式;3、算術平方根.4、A【解析】
由頻數分布表可知后兩組的頻數和為10,即可得知總人數,結合前兩組的頻數知出現次數最多的數據及第15、16個數據的平均數,可得答案.【詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數和為,則總人數為,故該組數據的眾數為14歲,中位數為(歲),所以對于不同的x,關于年齡的統計量不會發生改變的是眾數和中位數,故選A.【點睛】本題主要考查頻數分布表及統計量的選擇,由表中數據得出數據的總數是根本,熟練掌握平均數、中位數、眾數及方差的定義和計算方法是解題的關鍵.5、C【解析】
根據中位數的定義解答即可.【詳解】解:在這15個數中,處于中間位置的第8個數是1.1,所以中位數是1.1.
所以這些運動員跳高成績的中位數是1.1.
故選:C.【點睛】本題考查了中位數的意義.中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數.6、A【解析】試題分析:設這個多邊形的外角為x°,則內角為3x°,根據多邊形的相鄰的內角與外角互補可的方程x+3x=180,解可得外角的度數,再用外角和除以外角度數即可得到邊數.解:設這個多邊形的外角為x°,則內角為3x°,由題意得:x+3x=180,解得x=45,這個多邊形的邊數:360°÷45°=8,故選A.考點:多邊形內角與外角.7、B【解析】
由四邊形ABCD是平行四邊形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四邊形BFDE是平行四邊形,則可證得BE//DF,利用排除法即可求得答案.【詳解】四邊形ABCD是平行四邊形,
∴AD//BC,AD=BC,
A、∵AE=CF,∴DE=BF,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF;
B、∵BE=DF,
四邊形BFDE是等腰梯形,
本選項不一定能判定BE//DF;
C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF;
D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF.
故選B.【點睛】本題考查了平行四邊形的判定與性質,注意根據題意證得四邊形BFDE是平行四邊形是關鍵.8、B【解析】
作AC⊥y軸于C,ADx軸,BD⊥y軸,它們相交于D,有A點坐標得到AC=1,OC=1,由于AO繞點A逆時針旋轉90°,點O的對應B點,所以相當是把△AOC繞點A逆時針旋轉90°得到△ABD,根據旋轉的性質得AD=AC=1,BD=OC=1,原式可得到B點坐標為(2,1),然后根據反比例函數圖象上點的坐標特征計算k的值.【詳解】作AC⊥y軸于C,AD⊥x軸,BD⊥y軸,它們相交于D,如圖,∵A點坐標為(1,1),∴AC=1,OC=1.∵AO繞點A逆時針旋轉90°,點O的對應B點,即把△AOC繞點A逆時針旋轉90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B點坐標為(2,1),∴k=2×1=2.故選B.【點睛】本題考查了反比例函數圖象上點的坐標特征:反比例函數y=kx(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k9、B【解析】
作出圖形,結合圖形進行分析可得.【詳解】如圖所示:①以AC為對角線,可以畫出?AFCB,F(-3,1);②以AB為對角線,可以畫出?ACBE,E(1,-1);③以BC為對角線,可以畫出?ACDB,D(3,1),故選B.10、C【解析】
延長BC到E使BE=AD,利用中點的性質得到CM=DE=AB,再利用勾股定理進行計算即可解答.【詳解】解:延長BC到E使BE=AD,∵BC//AD,∴四邊形ACED是平行四邊形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中點,∵M是BD的中點,∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故選:C.【點睛】此題考查平行四邊形的性質,勾股定理,解題關鍵在于作輔助線.二、填空題(本大題共6個小題,每小題3分,共18分)11、a(a+2)(a-2)【解析】
12、將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度【解析】
根據圖形的旋轉和平移性質即可解題.【詳解】解:將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度即可得到A′B′、【點睛】本題考查了旋轉和平移,屬于簡單題,熟悉旋轉和平移的概念是解題關鍵.13、x=3【解析】去分母得:x﹣1=2,解得:x=3,經檢驗x=3是分式方程的解,故答案為3.【點睛】本題主要考查解分式方程,解分式方程的思路是將分式方程化為整式方程,然后求解.去分母后解出的結果須代入最簡公分母進行檢驗,結果為零,則原方程無解;結果不為零,則為原方程的解.14、2【解析】
先求出19行有多少個數,再加3就等于第20行第三個數是多少.然后根據奇偶性來決定負正.【詳解】∵1行1個數,2行3個數,3行5個數,4行7個數,…19行應有2×19-1=37個數∴到第19行一共有1+3+5+7+9+…+37=19×19=1.第20行第3個數的絕對值是1+3=2.又2是偶數,故第20行第3個數是2.15、π.【解析】
如圖,連接OE,利用切線的性質得OD=3,OE⊥BC,易得四邊形OECD為正方形,先利用扇形面積公式,利用S正方形OECD-S扇形EOD計算由弧DE、線段EC、CD所圍成的面積,然后利用三角形的面積減去剛才計算的面積即可得到陰影部分的面積.【詳解】連接OE,如圖,∵以AD為直徑的半圓O與BC相切于點E,∴OD=CD=3,OE⊥BC,∴四邊形OECD為正方形,∴由弧DE、線段EC、CD所圍成的面積=S正方形OECD﹣S扇形EOD=32﹣,∴陰影部分的面積,故答案為π.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.也考查了矩形的性質和扇形的面積公式.16、-4.【解析】
過點B作BD⊥x軸于點D,因為△AOB是等邊三角形,點A的坐標為(-4,0)所∠AOB=60°,根據銳角三角函數的定義求出BD及OD的長,可得出B點坐標,進而得出反比例函數的解析式.【詳解】過點B作BD⊥x軸于點D,∵△AOB是等邊三角形,點A的坐標為(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB?sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4.【點睛】本題考查了反比例函數圖象上點的坐標特點、等邊三角形的性質、解直角三角函數等知識,難度適中.三、解答題(共8題,共72分)17、(1)1;(2)這兩次測試的平均增長率為20%;(3)55%.【解析】
(1)將四次測試結果排序,結合中位數的定義即可求出結論;(2)由第四次測試合格人數為每次測試不合格人數平均數的2倍少18人,可求出第四次測試合格人數,設這兩次測試的平均增長率為x,由第二次、第四次測試合格人數,即可得出關于x的一元二次方程,解之取其中的正值即可得出結論;(3)由第二次測試合格人數結合平均增長率,可求出第三次測試合格人數,根據不合格總人數÷參加測試的總人數×100%即可求出不合格率,進而可求出合格率,再將條形統計圖和扇形統計圖補充完整,此題得解.【詳解】解:(1)將四次測試結果排序,得:30,40,50,60,∴測試不合格人數的中位數是(40+50)÷2=1.故答案為1;(2)∵每次測試不合格人數的平均數為(60+40+30+50)÷4=1(人),∴第四次測試合格人數為1×2﹣18=72(人).設這兩次測試的平均增長率為x,根據題意得:50(1+x)2=72,解得:x1=0.2=20%,x2=﹣2.2(不合題意,舍去),∴這兩次測試的平均增長率為20%;(3)50×(1+20%)=60(人),(60+40+30+50)÷(38+60+50+40+60+30+72+50)×100%=1%,1﹣1%=55%.補全條形統計圖與扇形統計圖如解圖所示.【點睛】本題考查了一元二次方程的應用、扇形統計圖、條形統計圖、中位數以及算術平均數,解題的關鍵是:(1)牢記中位數的定義;(2)找準等量關系,正確列出一元二次方程;(3)根據數量關系,列式計算求出統計圖中缺失數據.18、)補全的條形圖見解析()Ⅱ級.().【解析】試題分析:(1)根據Ⅱ級的人數和所占的百分比即可求出總數,從而求出三級人數,進而補全圖形;(2)把所有同類數據按照從小到大的順序排列,中間的數據是中位數,則該數在Ⅱ級.;(3)由樣本估計總體,由于時間不低于的人數占,故該類學生約有408人.試題解析:(1)本次隨機抽查的人數為:20÷40%=50(人).三級人數為:50-13-20-7=10.補圖如下:(2)把所有同類數據按照從小到大的順序排列,中間的數據是中位數,則該數在Ⅱ級.(3)由樣本估計總體,由于時間不低于的人數占,所以該類學生約有.19、(1)證明過程見解析;(2)【解析】
(1)根據CB=CD得出∠CBD=∠CDB,然后結合∠BCD=2∠ABD得出∠ABD=∠BCE,從而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切線;(2)根據Rt△AFD和Rt△BFD的性質得出AF和DF的長度,然后根據△ADF和△ACB相似得出相似比,從而得出BC的長度.【詳解】(1)∵CB=CD∴∠CBD=∠CDB又∵∠CEB=90°∴∠CBD+∠BCE=∠CDE+∠DCE∴∠BCE=∠DCE且∠BCD=2∠ABD∴∠ABD=∠BCE∴∠CBD+∠ABD=∠CBD+∠BCE=90°∴CB⊥AB垂足為B又∵CB為直徑∴AB是⊙O的切線.(2)∵∠A=60°,DF=∴在Rt△AFD中得出AF=1在Rt△BFD中得出DF=3∵∠ADF=∠ACB∠A=∠A∴△ADF∽△ACB∴即解得:CB=考點:(1)圓的切線的判定;(2)三角函數;(3)三角形相似的判定20、(1);(2)【解析】
(1)利用概率公式直接計算即可;
(2)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與小明和小華都選擇去同一個地方游玩的情況,再利用概率公式即可求得答案.【詳解】(1)∵小明準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,∴小明選擇去白鹿原游玩的概率=;(2)畫樹狀圖分析如下:兩人選擇的方案共有16種等可能的結果,其中選擇同種方案有1種,所以小明和小華都選擇去秦嶺國家植物園游玩的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,求出概率.21、(1)4,6,(4,6);(2)點P在線段CB上,點P的坐標是(2,6);(3)點P移動的時間是2.5秒或5.5秒.【解析】試題分析:(1)根據可以求得的值,根據長方形的性質,可以求得點的坐標;
(2)根據題意點從原點出發,以每秒2個單位長度的速度沿著的線路移動,可以得到當點移動4秒時,點的位置和點的坐標;
(3)由題意可以得到符合要求的有兩種情況,分別求出兩種情況下點移動的時間即可.試題解析:(1)∵a、b滿足∴a?4=0,b?6=0,解得a=4,b=6,∴點B的坐標是(4,6),故答案是:4,6,(4,6);(2)∵點P從原點出發,以每秒2個單位長度的速度沿著O?C?B?A?O的線路移動,∴2×4=8,∵OA=4,OC=6,∴當點P移動4秒時,在線段CB上,離點C的距離是:8?6=2,即當點P移動4秒時,此時點P在線段CB上,離點C的距離是2個單位長度,點P的坐標是(2,6);(3)由題意可得,在移動過程中,當點P到x軸的距離為5個單位長度時,存在兩種情況,第一種情況,當點P在OC上時,點P移動的時間是:5÷2=2.5秒,第二種情況,當點P在BA上時,點P移動的時間是:(6+4+1)÷2=5.5秒,故在移動過程中,當點P到x軸的距離為5個單位長度時,點P移動的時間是2.5秒或5.5秒.22、80;(1)甲;(2);(3)乙學校競賽成績較好,理由見解析【解析】
首先根據乙校的成績結合眾數的定義即可得出a的值;(1)根據兩個學校成績的中位數進一步判斷即可;(2)根據概率的定義,結合乙校優秀成績的概率進一步求解即可;(3)根據題意,從平均數以及中位數兩方面加以比較分析即可.【詳解】由乙校成績可知,其中80出現的次數最多,故80為該組數據的眾數,∴a=80,故答案為:80;(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 社區活躍度的預算與投資合同
- 全職員工離職說明
- 數據庫技術COMPUTER87課件
- 鐵路市場營銷集中性市場營銷策略課件
- 雙總線冗余供電方式盧凱霞時間年月課件
- 中醫特色護理課件
- 中醫關于水腫的課件
- 高空電力作業安全合同
- 養生保健品經銷合同范本
- 北京市東城區2024屆高三下學期一模歷史試題 含解析
- 環境毒理學考試整理重點
- GH-T 1388-2022 脫水大蒜標準規范
- (完整版)軟件工程導論(第六版)張海藩牟永敏課后習題答案
- 金屬材料成形工藝及控制課件:軋制理論與工藝 (2)-
- 《我與集體共成長》的主題班會
- 六年級趣味數學活動課堂課件
- imo中的問題定理與方法
- 新能源汽車運用與維修專業人才培養方案
- 氨吹脫塔單元設計示例
- 中國移動-安全-L3
- GB/T 42314-2023電化學儲能電站危險源辨識技術導則
評論
0/150
提交評論