江蘇省張家港市梁豐初級中學2023-2024學年中考猜題數學試卷含解析_第1頁
江蘇省張家港市梁豐初級中學2023-2024學年中考猜題數學試卷含解析_第2頁
江蘇省張家港市梁豐初級中學2023-2024學年中考猜題數學試卷含解析_第3頁
江蘇省張家港市梁豐初級中學2023-2024學年中考猜題數學試卷含解析_第4頁
江蘇省張家港市梁豐初級中學2023-2024學年中考猜題數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省張家港市梁豐初級中學2023-2024學年中考猜題數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知BD與CE相交于點A,ED∥BC,AB=8,AC=12,AD=6,那么AE的長等于()A.4 B.9 C.12 D.162.將不等式組的解集在數軸上表示,下列表示中正確的是()A. B. C. D.3.拋物線y=3(x﹣2)2+5的頂點坐標是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)4.如果(,均為非零向量),那么下列結論錯誤的是()A.// B.-2=0 C.= D.5.下列圖形是由同樣大小的棋子按照一定規律排列而成的,其中,圖①中有5個棋子,圖②中有10個棋子,圖③中有16個棋子,…,則圖⑥________中有個棋子()A.31 B.35 C.40 D.506.如圖,矩形ABCD的頂點A、C分別在直線a、b上,且a∥b,∠1=60°,則∠2的度數為()A.30° B.45° C.60° D.75°7.在一次體育測試中,10名女生完成仰臥起坐的個數如下:38,52,47,46,50,50,61,72,45,48,則這10名女生仰臥起坐個數不少于50個的頻率為()A.0.3 B.0.4 C.0.5 D.0.68.2014年底,國務院召開了全國青少年校園足球工作會議,明確由教育部正式牽頭負責校園足球工作.2018年2月1日,教育部第三場新春系列發布會上,王登峰司長總結前三年的工作時提到:校園足球場地,目前全國校園里面有5萬多塊,到2020年要達到85000塊.其中85000用科學記數法可表示為()A.0.85105 B.8.5104 C.8510-3 D.8.510-49.如圖,△ADE繞正方形ABCD的頂點A順時針旋轉90°,得△ABF,連接EF交AB于H,有如下五個結論①AE⊥AF;②EF:AF=:1;③AF2=FH?FE;④∠AFE=∠DAE+∠CFE⑤FB:FC=HB:EC.則正確的結論有()A.2個 B.3個 C.4個 D.5個10.實數a,b在數軸上的對應點的位置如圖所示,則正確的結論是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b二、填空題(共7小題,每小題3分,滿分21分)11.如圖,邊長為6的菱形ABCD中,AC是其對角線,∠B=60°,點P在CD上,CP=2,點M在AD上,點N在AC上,則△PMN的周長的最小值為_____________.12.函數的定義域是__________.13.觀光塔是濰坊市區的標志性建筑.為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°,已知樓房高AB約是45m,根據以上觀測數據可求觀光塔的高CD是______m.14.分解因式:_______________.15.如圖,直線y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點,那么當y1>y2時,x的取值范圍是_____.16.如圖,在平面直角坐標系xOy中,四邊形OABC是正方形,點C(0,4),D是OA中點,將△CDO以C為旋轉中心逆時針旋轉90°后,再將得到的三角形平移,使點C與點O重合,寫出此時點D的對應點的坐標:_____.17.已知點A(x1,y1),B(x2,y2)在直線y=kx+b上,且直線經過第一、三、四象限,當x1<x2時,y1與y2的大小關系為______________.三、解答題(共7小題,滿分69分)18.(10分)已知:二次函數滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個交點;②對于任意實數x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.(1)求二次函數y=ax2+bx的解析式;(2)若當-2≤x≤r(r≠0)時,恰有t≤y≤1.5r成立,求t和r的值.19.(5分)如圖,在Rt△ABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結AD.已知∠CAD=∠B.求證:AD是⊙O的切線.若BC=8,tanB=,求⊙O的半徑.20.(8分)某市旅游部門統計了今年“五?一”放假期間該市A、B、C、D四個旅游景區的旅游人數,并繪制出如圖所示的條形統計圖和扇形統計圖,根據圖中的信息解答下列問題:(1)求今年“五?一”放假期間該市這四個景點共接待游客的總人數;(2)扇形統計圖中景點A所對應的圓心角的度數是多少,請直接補全條形統計圖;(3)根據預測,明年“五?一”放假期間將有90萬游客選擇到該市的這四個景點旅游,請你估計有多少人會選擇去景點D旅游?21.(10分)定義:如果把一條拋物線繞它的頂點旋轉180°得到的拋物線我們稱為原拋物線的“孿生拋物線”.(1)求拋物線y=x2﹣2x的“孿生拋物線”的表達式;(2)若拋物線y=x2﹣2x+c的頂點為D,與y軸交于點C,其“孿生拋物線”與y軸交于點C′,請判斷△DCC’的形狀,并說明理由:(3)已知拋物線y=x2﹣2x﹣3與y軸交于點C,與x軸正半軸的交點為A,那么是否在其“孿生拋物線”上存在點P,在y軸上存在點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形?若存在,求出P點的坐標;若不存在,說明理由.22.(10分)已知關于x的一元二次方程x2+(2m+3)x+m2=1有兩根α,β求m的取值范圍;若α+β+αβ=1.求m的值.23.(12分)如圖,在一條河的北岸有兩個目標M、N,現在位于它的對岸設定兩個觀測點A、B.已知AB∥MN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.(1)求點M到AB的距離;(結果保留根號)(2)在B點又測得∠NBA=53°,求MN的長.(結果精確到1米)(參考數據:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)24.(14分)在Rt△ABC中,∠ACB=90°,以點A為圓心,AC為半徑,作⊙A交AB于點D,交CA的延長線于點E,過點E作AB的平行線EF交⊙A于點F,連接AF、BF、DF(1)求證:BF是⊙A的切線.(2)當∠CAB等于多少度時,四邊形ADFE為菱形?請給予證明.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

由于ED∥BC,可證得△ABC∽△ADE,根據相似三角形所得比例線段,即可求得AE的長.【詳解】∵ED∥BC,∴△ABC∽△ADE,∴=,∴==,即AE=9;∴AE=9.故答案選B.【點睛】本題考查的知識點是相似三角形的判定與性質,解題的關鍵是熟練的掌握相似三角形的判定與性質.2、B【解析】先解不等式組中的每一個不等式,再把不等式的解集表示在數軸上即可.解:不等式可化為:,即.

∴在數軸上可表示為.故選B.“點睛”不等式組的解集在數軸上表示的方法:把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.3、C【解析】

根據二次函數的性質y=a(x﹣h)2+k的頂點坐標是(h,k)進行求解即可.【詳解】∵拋物線解析式為y=3(x-2)2+5,∴二次函數圖象的頂點坐標是(2,5),故選C.【點睛】本題考查了二次函數的性質,根據拋物線的頂點式,可確定拋物線的開口方向,頂點坐標(對稱軸),最大(最小)值,增減性等.4、B【解析】試題解析:向量最后的差應該還是向量.故錯誤.故選B.5、C【解析】

根據題意得出第n個圖形中棋子數為1+2+3+…+n+1+2n,據此可得.【詳解】解:∵圖1中棋子有5=1+2+1×2個,圖2中棋子有10=1+2+3+2×2個,圖3中棋子有16=1+2+3+4+3×2個,…∴圖6中棋子有1+2+3+4+5+6+7+6×2=40個,故選C.【點睛】本題考查了圖形的變化規律,通過從一些特殊的圖形變化中發現不變的因素或按規律變化的因素,然后推廣到一般情況.6、C【解析】試題分析:過點D作DE∥a,∵四邊形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故選C.考點:1矩形;2平行線的性質.7、C【解析】

用仰臥起坐個數不少于10個的頻數除以女生總人數10計算即可得解.【詳解】仰臥起坐個數不少于10個的有12、10、10、61、72共1個,所以,頻率==0.1.故選C.【點睛】本題考查了頻數與頻率,頻率=.8、B【解析】

根據科學記數法的定義,科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,等于這個數的整數位數減1.【詳解】解:85000用科學記數法可表示為8.5×104,

故選:B.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.9、C【解析】

由旋轉性質得到△AFB≌△AED,再根據相似三角對應邊的比等于相似比,即可分別求得各選項正確與否.【詳解】解:由題意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此選項①正確;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正確;∵△AEF是等腰直角三角形,有EF:AF=:1,故此選項②正確;∵△AEF與△AHF不相似,∴AF2=FH·FE不正確.故此選項③錯誤,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此選項⑤正確.故選:C【點睛】本題主要考查了正方形的性質、等腰直角三角形的性質、全等三角形的判定和性質等知識,熟練地應用旋轉的性質以及相似三角形的性質是解決問題的關鍵.10、D【解析】試題分析:A.如圖所示:﹣3<a<﹣2,故此選項錯誤;B.如圖所示:﹣3<a<﹣2,故此選項錯誤;C.如圖所示:1<b<2,則﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此選項錯誤;D.由選項C可得,此選項正確.故選D.考點:實數與數軸二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】

過P作關于AC和AD的對稱點,連接和,過P作,和,M,N共線時最短,根據對稱性得知△PMN的周長的最小值為.因為四邊形ABCD是菱形,AD是對角線,可以求得,根據特殊三角形函數值求得,,再根據線段相加勾股定理即可求解.【詳解】過P作關于AC和AD的對稱點,連接和,過P作,四邊形ABCD是菱形,AD是對角線,,,,,又由題意得【點睛】本題主要考查對稱性質,菱形性質,內角和定理和勾股定理,熟悉掌握定理是關鍵.12、【解析】

根據二次根式的性質,被開方數大于等于0,可知:x-1≥0,解得x的范圍.【詳解】根據題意得:x-1≥0,解得:x≥1.故答案為:.【點睛】此題考查二次根式,解題關鍵在于掌握二次根式有意義的條件.13、135【解析】試題分析:根據題意可得:∠BDA=30°,∠DAC=60°,在Rt△ABD中,因為AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.考點:解直角三角形的應用.14、(x+y)(x-y)【解析】直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案為(x+y)(x-y).15、﹣1<x<2【解析】

根據圖象得出取值范圍即可.【詳解】解:因為直線y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點,所以當y1>y2時,﹣1<x<2,故答案為﹣1<x<2【點睛】此題考查二次函數與不等式,關鍵是根據圖象得出取值范圍.16、(4,2).【解析】

利用圖象旋轉和平移可以得到結果.【詳解】解:∵△CDO繞點C逆時針旋轉90°,得到△CBD′,則BD′=OD=2,∴點D坐標為(4,6);當將點C與點O重合時,點C向下平移4個單位,得到△OAD′′,∴點D向下平移4個單位.故點D′′坐標為(4,2),故答案為(4,2).【點睛】平移和旋轉:平移是指在同一平面內,將一個圖形整體按照某個直線方向移動一定的距離,這樣的圖形運動叫做圖形的平移運動,簡稱平移.定義在平面內,將一個圖形繞一點按某個方向轉動一個角度,這樣的運動叫做圖形的旋轉.這個定點叫做旋轉中心,轉動的角度叫做旋轉角.17、y1<y1【解析】

直接利用一次函數的性質分析得出答案.【詳解】解:∵直線經過第一、三、四象限,∴y隨x的增大而增大,∵x1<x1,∴y1與y1的大小關系為:y1<y1.故答案為:y1<y1.【點睛】此題主要考查了一次函數圖象上點的坐標特征,正確掌握一次函數增減性是解題關鍵.三、解答題(共7小題,滿分69分)18、(1)y=x2+x;(2)t=-4,r=-1.【解析】

(1)由①聯立方程組,根據拋物線y=ax2+bx與直線y=x只有一個交點可以求出b的值,由②可得對稱軸為x=1,從而得a的值,進而得出結論;(2)進行分類討論,分別求出t和r的值.【詳解】(1)y=ax2+bx和y=x聯立得:ax2+(b+1)x=0,Δ=0得:(b-1)2=0,得b=1,∵對稱軸為=1,∴=1,∴a=,∴y=x2+x.(2)因為y=x2+x=(x-1)2+,所以頂點(1,)當-2<r<1,且r≠0時,當x=r時,y最大=r2+r=1.5r,得r=-1,當x=-2時,y最小=-4,所以,這時t=-4,r=-1.當r≥1時,y最大=,所以1.5r=,所以r=,不合題意,舍去,綜上可得,t=-4,r=-1.【點睛】本題考查二次函數綜合題,解題的關鍵是理解題意,利用二次函數的性質解決問題.19、(1)證明見解析;(2).【解析】

(1)連接OD,由OD=OB,利用等邊對等角得到一對角相等,再由已知角相等,等量代換得到∠1=∠3,求出∠4為90°,即可得證;

(2)設圓的半徑為r,利用銳角三角函數定義求出AB的長,再利用勾股定理列出關于r的方程,求出方程的解即可得到結果.【詳解】(1)證明:連接,,,,,在中,,,,則為圓的切線;(2)設圓的半徑為,在中,,根據勾股定理得:,,在中,,,根據勾股定理得:,在中,,即,解得:.【點睛】此題考查了切線的判定與性質,以及勾股定理,熟練掌握切線的判定與性質是解本題的關鍵.20、(1)60人;(2)144°,補全圖形見解析;(3)15萬人.【解析】

(1)用B景點人數除以其所占百分比可得;(2)用360°乘以A景點人數所占比例即可,根據各景點人數之和等于總人數求得C的人數即可補全條形圖;(3)用總人數乘以樣本中D景點人數所占比例【詳解】(1)今年“五?一”放假期間該市這四個景點共接待游客的總人數為18÷30%=60萬人;(2)扇形統計圖中景點A所對應的圓心角的度數是360°×=144°,C景點人數為60﹣(24+18+10)=8萬人,補全圖形如下:(3)估計選擇去景點D旅游的人數為90×=15(萬人).【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用.讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.21、(1)y=-(x-1)2=-x2+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).【解析】

(1)當拋物線繞其頂點旋轉180°后,拋物線的頂點坐標不變,只是開口方向相反,則可根據頂點式寫出旋轉后的拋物線解析式;(2)可分別求出原拋物線和其“孿生拋物線”與y軸的交點坐標C、C′,由點的坐標可知△DCC’是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孿生拋物線”為y=-x2+2x-5,當AC為對角線時,由中點坐標可知點P不存在,當AC為邊時,分兩種情況可求得點P的坐標.【詳解】(1)拋物線y=x2-2x化為頂點式為y=(x-1)2-1,頂點坐標為(1,-1),由于拋物線y=x2-2x繞其頂點旋轉180°后拋物線的頂點坐標不變,只是開口方向相反,則所得拋物線解析式為y=-(x-1)2-1=-x2+2x-2;(2)△DCC'是等腰直角三角形,理由如下:∵拋物線y=x2-2x+c=(x-1)2+c-1,∴拋物線頂點為D的坐標為(1,c-1),與y軸的交點C的坐標為(0,c),∴其“孿生拋物線”的解析式為y=-(x-1)2+c-1,與y軸的交點C’的坐標為(0,c-2),∴CC'=c-(c-2)=2,∵點D的橫坐標為1,∴∠CDC'=90°,由對稱性質可知DC=DC’,∴△DCC'是等腰直角三角形;(3)∵拋物線y=x2-2x-3與y軸交于點C,與x軸正半軸的交點為A,令x=0,y=-3,令y=0時,y=x2-2x-3,解得x1=-1,x2=3,∴C(0,-3),A(3,0),∵y=x2-2x-3=(x-1)2-4,∴其“孿生拋物線”的解析式為y=-(x-1)2-4=-x2+2x-5,若A、C為平行四邊形的對角線,∴其中點坐標為(,?),設P(a,-a2+2a-5),∵A、C、P、Q為頂點的四邊形為平行四邊形,∴Q(0,a-3),∴=?,化簡得,a2+3a+5=0,△<0,方程無實數解,∴此時滿足條件的點P不存在,若AC為平行四邊形的邊,點P在y軸右側,則AP∥CQ且AP=CQ,∵點C和點Q在y軸上,∴點P的橫坐標為3,把x=3代入“孿生拋物線”的解析式y=-32+2×3-5=-9+6-5=-8,∴P1(3,-8),若AC為平行四邊形的邊,點P在y軸左側,則AQ∥CP且AQ=CP,∴點P的橫坐標為-3,把x=-3代入“孿生拋物線”的解析式y=-9-6-5=-20,∴P2(-3,-20)∴原拋物線的“孿生拋物線”上存在點P1(3,-8),P2(-3,-20),在y軸上存在點Q,使以點A、C、P、Q為頂點的四邊形為平行四邊形.【點睛】本題是二次函數綜合題型,主此題主要考查了根據二次函數的圖象的變換求拋物線的解析式,解題的關鍵是求出旋轉后拋物線的頂點坐標以及確定出點P的位置,注意分情況討論.22、(1)m≥﹣34;(2)m【解析】

(1)根據方程有兩個相等的實數根可知△>1,求出m的取值范圍即可;(2)根據根與系數的關系得出α+β與αβ的值,代入代數式進行計算即可.【詳解】(1)由題意知,(2m+2)2﹣4×1×m2≥1,解得:m≥﹣34(2)由根與系數的關系得:α+β=﹣(2m+2),αβ=m2,∵α+β+αβ=1,∴﹣(2m+2)+m2=1,解得:m1=﹣1,m1=2,由(1)知m≥﹣34所以m1=﹣1應舍去,m的值為2.【點睛】本題考查的是根與系數的關系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的兩根時,x1+x2=﹣ba,x1x2=c23、(1);(2)95m.【解析】

(1)過點M作MD⊥AB于點D,易求AD的長,再由BD=MD可得BD的長,即M到AB的距離;

(2)過點N作NE⊥AB于點E,易證四邊形MDEN為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論