




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.青藏高原是世界上海拔最高的高原,它的面積是2500000平方千米.將2500000用科學記數法表示應為()A. B. C. D.2.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點,G是△ABC的重心,如果以點D為圓心DG為半徑的圓和以點C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<103.如果一個正多邊形內角和等于1080°,那么這個正多邊形的每一個外角等于()A. B. C. D.4.某大型企業員工總數為28600人,數據“28600”用科學記數法可表示為()A.0.286×105B.2.86×105C.28.6×103D.2.86×1045.下列各式中計算正確的是()A.x3?x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t6.計算(-18)÷9的值是()A.-9 B.-27 C.-2 D.27.如圖,若干個全等的正五邊形排成環狀,圖中所示的是前3個正五邊形,要完成這一圓環還需正五邊形的個數為()A.10 B.9 C.8 D.78.2017年“智慧天津”建設成效顯著,互聯網出口帶寬達到17200吉比特每秒.將17200用科學記數法表示應為()A.172×102 B.17.2×103 C.1.72×104 D.0.172×1059.如圖所示的幾何體的俯視圖是()A. B. C. D.10.某城年底已有綠化面積公頃,經過兩年綠化,到年底增加到公頃,設綠化面積平均每年的增長率為,由題意所列方程正確的是().A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.若x=-1,則x2+2x+1=__________.12.分解因式:.13.計算5個數據的方差時,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],則的值為_____.14.的相反數是______.15.如圖所示,P為∠α的邊OA上一點,且P點的坐標為(3,4),則sinα+cosα=_____.16.在比例尺為1:50000的地圖上,量得甲、乙兩地的距離為12厘米,則甲、乙兩地的實際距離是______千米.三、解答題(共8題,共72分)17.(8分)如圖,為了測量建筑物AB的高度,在D處樹立標桿CD,標桿的高是2m,在DB上選取觀測點E、F,從E測得標桿和建筑物的頂部C、A的仰角分別為58°、45°.從F測得C、A的仰角分別為22°、70°.求建筑物AB的高度(精確到0.1m).(參考數據:tan22°≈0.40,tan58°≈1.60,tan70°≈2.1.)18.(8分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.19.(8分)如圖,已知點A,B的坐標分別為(0,0)、(2,0),將△ABC繞C點按順時針方向旋轉90°得到△A1B1C.(1)畫出△A1B1C;(2)A的對應點為A1,寫出點A1的坐標;(3)求出B旋轉到B1的路線長.20.(8分)如圖1,點P是平面直角坐標系中第二象限內的一點,過點P作PA⊥y軸于點A,點P繞點A順時針旋轉60°得到點P',我們稱點P'是點P的“旋轉對應點”.(1)若點P(﹣4,2),則點P的“旋轉對應點”P'的坐標為;若點P的“旋轉對應點”P'的坐標為(﹣5,16)則點P的坐標為;若點P(a,b),則點P的“旋轉對應點”P'的坐標為;(2)如圖2,點Q是線段AP'上的一點(不與A、P'重合),點Q的“旋轉對應點”是點Q',連接PP'、QQ',求證:PP'∥QQ';(3)點P與它的“旋轉對應點”P'的連線所在的直線經過點(,6),求直線PP'與x軸的交點坐標.21.(8分)如圖1,□OABC的邊OC在y軸的正半軸上,OC=3,A(2,1),反比例函數y=(x>0)的圖象經過點B.(1)求點B的坐標和反比例函數的關系式;(2)如圖2,將線段OA延長交y=(x>0)的圖象于點D,過B,D的直線分別交x軸、y軸于E,F兩點,①求直線BD的解析式;②求線段ED的長度.22.(10分)如圖1,的余切值為2,,點D是線段上的一動點(點D不與點A、B重合),以點D為頂點的正方形的另兩個頂點E、F都在射線上,且點F在點E的右側,聯結,并延長,交射線于點P.(1)點D在運動時,下列的線段和角中,________是始終保持不變的量(填序號);①;②;③;④;⑤;⑥;(2)設正方形的邊長為x,線段的長為y,求y與x之間的函數關系式,并寫出定義域;(3)如果與相似,但面積不相等,求此時正方形的邊長.23.(12分)如圖,二次函數的圖象與x軸的一個交點為,另一個交點為A,且與y軸相交于C點求m的值及C點坐標;在直線BC上方的拋物線上是否存在一點M,使得它與B,C兩點構成的三角形面積最大,若存在,求出此時M點坐標;若不存在,請簡要說明理由為拋物線上一點,它關于直線BC的對稱點為Q當四邊形PBQC為菱形時,求點P的坐標;點P的橫坐標為,當t為何值時,四邊形PBQC的面積最大,請說明理由.24.如圖,一次函數y=kx+b與反比例函數y=(x>0)的圖象交于A(m,6),B(3,n)兩點.求一次函數關系式;根據圖象直接寫出kx+b﹣>0的x的取值范圍;求△AOB的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:在實際生活中,許多比較大的數,我們習慣上都用科學記數法表示,使書寫、計算簡便.解答:解:根據題意:2500000=2.5×1.故選C.2、D【解析】延長CD交⊙D于點E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點睛】本題考查了三角形的重心的性質、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據知求出CG的長是解題的關鍵.3、A【解析】
首先設此多邊形為n邊形,根據題意得:180(n-2)=1080,即可求得n=8,再由多邊形的外角和等于360°,即可求得答案.【詳解】設此多邊形為n邊形,根據題意得:180(n-2)=1080,解得:n=8,∴這個正多邊形的每一個外角等于:360°÷8=45°.故選A.【點睛】此題考查了多邊形的內角和與外角和的知識.注意掌握多邊形內角和定理:(n-2)?180°,外角和等于360°.4、D【解析】
用科學記數法表示較大的數時,一般形式為a×10﹣n,其中1≤|a|<10,n為整數,據此判斷即可【詳解】28600=2.86×1.故選D.【點睛】此題主要考查了用科學記數法表示較大的數,一般形式為a×10﹣n,其中1≤|a|<10,確定a與n的值是解題的關鍵5、D【解析】試題解析:A、原式計算錯誤,故本選項錯誤;B、原式計算錯誤,故本選項錯誤;C、原式計算錯誤,故本選項錯誤;D、原式計算正確,故本選項正確;故選D.點睛:同底數冪相除,底數不變,指數相減.6、C【解析】
直接利用有理數的除法運算法則計算得出答案.【詳解】解:(-18)÷9=-1.
故選:C.【點睛】此題主要考查了有理數的除法運算,正確掌握運算法則是解題關鍵.7、D【解析】分析:先根據多邊形的內角和公式(n﹣2)?180°求出正五邊形的每一個內角的度數,再延長五邊形的兩邊相交于一點,并根據四邊形的內角和求出這個角的度數,然后根據周角等于360°求出完成這一圓環需要的正五邊形的個數,然后減去3即可得解.詳解:∵五邊形的內角和為(5﹣2)?180°=540°,∴正五邊形的每一個內角為540°÷5=18°,如圖,延長正五邊形的兩邊相交于點O,則∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已經有3個五邊形,∴1﹣3=7,即完成這一圓環還需7個五邊形.故選D.點睛:本題考查了多邊形的內角和公式,延長正五邊形的兩邊相交于一點,并求出這個角的度數是解題的關鍵,注意需要減去已有的3個正五邊形.8、C【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:將17200用科學記數法表示為1.72×1.
故選C.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.9、D【解析】
找到從上面看所得到的圖形即可,注意所有看到的棱都應表現在俯視圖中.【詳解】從上往下看,該幾何體的俯視圖與選項D所示視圖一致.故選D.【點睛】本題考查了簡單組合體三視圖的知識,俯視圖是從物體的上面看得到的視圖.10、B【解析】
先用含有x的式子表示2015年的綠化面積,進而用含有x的式子表示2016年的綠化面積,根據等式關系列方程即可.【詳解】由題意得,綠化面積平均每年的增長率為x,則2015年的綠化面積為300(1+x),2016年的綠化面積為300(1+x)(1+x),經過兩年的增長,綠化面積由300公頃變為363公頃.可列出方程:300(1+x)2=363.故選B.【點睛】本題主要考查一元二次方程的應用,找準其中的等式關系式解答此題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】
先利用完全平方公式對所求式子進行變形,然后代入x的值進行計算即可.【詳解】∵x=-1,∴x2+2x+1=(x+1)2=(-1+1)2=2,故答案為:2.【點睛】本題考查了代數式求值,涉及了因式分解,二次根式的性質等,熟練掌握相關知識是解題的關鍵.12、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續分解因式.因此,先提取公因式后繼續應用平方差公式分解即可:.考點:提公因式法和應用公式法因式分解.13、1【解析】
根據平均數的定義計算即可.【詳解】解:故答案為1.【點睛】本題主要考查平均數的求法,掌握平均數的公式是解題的關鍵.14、﹣.【解析】
根據只有符號不同的兩個數叫做互為相反數解答.【詳解】的相反數是.故答案為.【點睛】本題考查的知識點是相反數,解題關鍵是熟記相反數的概念.15、【解析】
根據正弦和余弦的概念求解.【詳解】解:∵P是∠α的邊OA上一點,且P點坐標為(3,4),∴PB=4,OB=3,OP==5,故sinα==,cosα=,∴sinα+cosα=,故答案為【點睛】此題考查的是銳角三角函數的定義,解答此類題目的關鍵是找出所求角的對應邊.16、【解析】
本題可根據比例線段進行求解.【詳解】解:因為在比例尺為1:50000的地圖上甲,乙兩地的距離12cm,所以,甲、乙的實際距離x滿足12:x=1:50000,即x=12=600000cm=6km.故答案為6.【點睛】本題主要考查比例尺和比例線段的相關知識.三、解答題(共8題,共72分)17、建筑物AB的高度約為5.9米【解析】
在△CED中,得出DE,在△CFD中,得出DF,進而得出EF,列出方程即可得出建筑物AB的高度;【詳解】在Rt△CED中,∠CED=58°,∵tan58°=,∴DE=,在Rt△CFD中,∠CFD=22°,∵tan22°=,∴DF=,∴EF=DF﹣DE=-,同理:EF=BE﹣BF=,∴=-,解得:AB≈5.9(米),答:建筑物AB的高度約為5.9米.【點睛】考查解直角三角形的應用,解題的關鍵是明確題意,利用數形結合的思想解答問題.18、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解析】
(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據30°所對的直角邊等于斜邊的一半可得:根據“等高底”三角形的概念即可判斷.(1)點B是的重心,得到設則根據勾股定理可得即可求出它們的比值.(3)分兩種情況進行討論:①當時和②當時.【詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)如圖1,∵△ABC是“等高底”三角形,BC是“等底”,∴∵△ABC關于BC所在直線的對稱圖形是,∴∠ADC=90°,∵點B是的重心,∴設則由勾股定理得∴(3)①當時,Ⅰ.如圖3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”為BC,l1∥l1,l1與l1之間的距離為1,.∴∴BE=1,即EC=4,∴∵△ABC繞點C按順時針方向旋轉45°得到△A'B'C,∴∠DCF=45°,設∵l1∥l1,∴∴即∴∴Ⅱ.如圖4,此時△ABC等腰直角三角形,∵△ABC繞點C按順時針方向旋轉45°得到,∴是等腰直角三角形,∴②當時,Ⅰ.如圖5,此時△ABC是等腰直角三角形,∵△ABC繞點C按順時針方向旋轉45°得到△A'B'C,∴∴Ⅱ.如圖6,作于E,則∴∴∴△ABC繞點C按順時針方向旋轉45°,得到時,點A'在直線l1上,∴∥l1,即直線與l1無交點,綜上所述,CD的值為【點睛】屬于新定義問題,考查對與等底高三角形概念的理解,勾股定理,等腰直角三角形的性質等,掌握等底高三角形的性質是解題的關鍵.19、(1)畫圖見解析;(2)A1(0,6);(3)弧BB1=.【解析】
(1)根據旋轉圖形的性質首先得出各點旋轉后的點的位置,然后順次連接各點得出圖形;(2)根據圖形得出點的坐標;(3)根據弧長的計算公式求出答案.【詳解】解:(1)△A1B1C如圖所示.(2)A1(0,6).(3).【點睛】本題考查了旋轉作圖和弧長的計算.20、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)見解析;(3)直線PP'與x軸的交點坐標(﹣,0)【解析】
(1)①當P(-4,2)時,OA=2,PA=4,由旋轉知,∠P'AH=30°,進而P'H=P'A=2,AH=P'H=2,即可得出結論;②當P'(-5,16)時,確定出P'A=10,AH=5,由旋轉知,PA=PA'=10,OA=OH-AH=16-5,即可得出結論;③當P(a,b)時,同①的方法得,即可得出結論;(2)先判斷出∠BQQ'=60°,進而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出結論;(3)先確定出yPP'=x+3,即可得出結論.【詳解】解:(1)如圖1,①當P(﹣4,2)時,∵PA⊥y軸,∴∠PAH=90°,OA=2,PA=4,由旋轉知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt△P'AH中,P'H=P'A=2,∴AH=P'H=2,∴OH=OA+AH=2+2,∴P'(﹣2,2+2),②當P'(﹣5,16)時,在Rt△P'AH中,∠P'AH=30°,P'H=5,∴P'A=10,AH=5,由旋轉知,PA=PA'=10,OA=OH﹣AH=16﹣5,∴P(﹣10,16﹣5),③當P(a,b)時,同①的方法得,P'(,b﹣a),故答案為:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)如圖2,過點Q作QB⊥y軸于B,∴∠BQQ'=60°,由題意知,△PAP'是等邊三角形,∴∠PAP'=∠PP'A=60°,∵QB⊥y軸,PA⊥y軸,∴QB∥PA,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A,∴PP'∥QQ';(3)設yPP'=kx+b',由題意知,k=,∵直線經過點(,6),∴b'=3,∴yPP'=x+3,令y=0,∴x=﹣,∴直線PP'與x軸的交點坐標(﹣,0).【點睛】此題是幾何變換綜合題,主要考查了含30度角的直角三角形的性質,旋轉的性質,等邊三角形的判定和性質,待定系數法,解本題的關鍵是理解新定義.21、(1)B(2,4),反比例函數的關系式為y=;(2)①直線BD的解析式為y=-x+6;②ED=2【解析】試題分析:(1)過點A作AP⊥x軸于點P,由平行四邊形的性質可得BP=4,可得B(2,4),把點B坐標代入反比例函數解析式中即可;(2)①先求出直線OA的解析式,和反比例函數解析式聯立,解方程組得到點D的坐標,再由待定系數法求得直線BD的解析式;②先求得點E的坐標,過點D分別作x軸的垂線,垂足為G(4,0),由溝谷定理即可求得ED長度.試題解析:(1)過點A作AP⊥x軸于點P,則AP=1,OP=2,又∵AB=OC=3,∴B(2,4).,∵反比例函數y=(x>0)的圖象經過的B,∴4=,∴k=8.∴反比例函數的關系式為y=;(2)①由點A(2,1)可得直線OA的解析式為y=x.解方程組,得,.∵點D在第一象限,∴D(4,2).由B(2,4),點D(4,2)可得直線BD的解析式為y=-x+6;②把y=0代入y=-x+6,解得x=6,∴E(6,0),過點D分別作x軸的垂線,垂足分別為G,則G(4,0),由勾股定理可得:ED=.點睛:本題考查一次函數、反比例函數、平行四邊形等幾何知識,綜合性較強,要求學生有較強的分析問題和解決問題的能力.22、(1)④⑤;(2);(3)或.【解析】
(1)作于M,交于N,如圖,利用三角函數的定義得到,設,則,利用勾股定理得,解得,即,,設正方形的邊長為x,則,,由于,則可判斷為定值;再利用得到,則可判斷為定值;在中,利用勾股定理和三角函數可判斷在變化,在變化,在變化;(2)易得四邊形為矩形,則,證明,利用相似比可得到y與x的關系式;(3)由于,與相似,且面積不相等,利用相似比得到,討論:當點P在點F點右側時,則,所以,當點P在點F點左側時,則,所以,然后分別解方程即可得到正方形的邊長.【詳解】(1)如圖,作于M,交于N,在中,∵,設,則,∵,∴,解得,∴,,設正方形的邊長為x,在中,∵,∴,∴,在中,,∴為定值;∵,∴,∴為定值;在中,,而在變化,∴在變化,在變化,∴在變化,所以和是始終保持不變的量;故答案為:④⑤(2)∵MN⊥AP,DEFG是正方形,∴四邊形為矩形,∴,∵,∴,∴,即,∴(3)∵,與相似,且面積不相等,∴,即,∴,當點P在點F點右側時,AP=AF+PF==,∴,解得,當點P在點F點左側時,,∴,解得,綜上所述,正方形的邊長為或.【點睛】本題考查了相似形綜合題:熟練掌握銳角三角函數的定義、正方形的性質和相似三角形的判定與性質.23、,;存在,;或;當時,.【解析】
(1)用待定系數法求出拋物線解析式;(2)先判斷出面積最大時,平移直線BC的直線和拋物線只有一個交點,從而求出點M坐標;(3)①先判斷出四邊形PBQC時菱形時,點P是線段BC的垂直平分線,利用該特殊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年基本建設貸款合同模板
- 學生文明行為倡導計劃
- 懷集一中20年高三實驗班二輪復習回歸教材訓練
- 信封采購合同樣本
- 2025年綠化工程施工合同樣本
- 上海長寧金杯出租合同樣本
- 2025簽訂合同后離職規定詳解
- 冰箱使用合同樣本
- 2025年住建部《建設工程施工合同示范文本》解析
- 2025酒店管理各類運營合同
- 2025年度國土空間規劃編制服務聘用合同范本
- 2025年高考作文備考之7個頂級人物素材
- 2024年09月2024年中國工商銀行校園招聘筆試歷年參考題庫附帶答案詳解
- 低血糖的識別及處理課件
- 骨折病人的中醫飲食護理
- 內蒙古科技館新館展陳創新方案
- 中國鹽業集團有限公司 筆試 內容
- 大模型原理與技術-課件 chap6 大模型微調
- 單層輕鋼結構施工方案
- 中醫藥文化節活動方案
- 深度學習及自動駕駛應用 課件 第9、10章 生成對抗網絡及自動駕駛應用、強化學習理論及自動駕駛應用實踐
評論
0/150
提交評論