2023屆陜西省漢中學市鎮巴縣中考三模數學試題含解析_第1頁
2023屆陜西省漢中學市鎮巴縣中考三模數學試題含解析_第2頁
2023屆陜西省漢中學市鎮巴縣中考三模數學試題含解析_第3頁
2023屆陜西省漢中學市鎮巴縣中考三模數學試題含解析_第4頁
2023屆陜西省漢中學市鎮巴縣中考三模數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是由幾個相同的小正方體搭成的一個幾何體,它的俯視圖是()A.B.C.D.2.哥哥與弟弟的年齡和是18歲,弟弟對哥哥說:“當我的年齡是你現在年齡的時候,你就是18歲”.如果現在弟弟的年齡是x歲,哥哥的年齡是y歲,下列方程組正確的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.3.一個圓的內接正六邊形的邊長為2,則該圓的內接正方形的邊長為()A. B.2 C.2 D.44.已知實數a<0,則下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>05.實數a,b,c在數軸上對應點的位置大致如圖所示,O為原點,則下列關系式正確的是()A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c6.如圖,AB是⊙O的直徑,弦CD⊥AB于E,∠CDB=30°,⊙O的半徑為,則弦CD的長為()A. B.3cm C. D.9cm7.下圖是由八個相同的小正方體組合而成的幾何體,其左視圖是()A. B. C. D.8.如圖,直角三角形ABC中,∠C=90°,AC=2,AB=4,分別以AC、BC為直徑作半圓,則圖中陰影部分的面積為()A.2π﹣ B.π+ C.π+2 D.2π﹣29.如圖,A、B、C是小正方形的頂點,且每個小正方形的邊長為1,則tan∠BAC的值為()A. B.1 C. D.10.將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經過點,將繞點順時針方向旋轉(),交于點,交于點,則的值為()A. B. C. D.11.如圖,⊙O的半徑OA=6,以A為圓心,OA為半徑的弧交⊙O于B、C點,則BC=()A.6 B.6 C.3 D.312.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.125二、填空題:(本大題共6個小題,每小題4分,共24分.)13.2017年7月27日上映的國產電影《戰狼2》,風靡全國.劇中“犯我中華者,雖遠必誅”鼓舞人心,彰顯了祖國的強大實力與影響力,累計票房56.8億元.將56.8億元用科學記數法表示為_____元.14.如圖,在△ABC中,P,Q分別為AB,AC的中點.若S△APQ=1,則S四邊形PBCQ=__.15.如圖,在梯形ABCD中,AB∥CD,∠C=90°,BC=CD=4,AD=2,若,用、表示=_____.16.假期里小菲和小琳結伴去超市買水果,三次購買的草莓價格和數量如下表:價格/(元/kg)

12

10

8

合計/kg

小菲購買的數量/kg

2

2

2

6

小琳購買的數量/kg

1

2

3

6

從平均價格看,誰買得比較劃算?()A.一樣劃算B.小菲劃算C.小琳劃算D.無法比較17.在中,::1:2:3,于點D,若,則______18.如圖,矩形OABC的邊OA,OC分別在x軸,y軸上,點B在第一象限,點D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關于直線OD對稱(點A′和A,點B′和B分別對應).若AB=2,反比例函數y=(k≠0)的圖象恰好經過A′,B,則k的值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知一次函數y=x+1與拋物線y=x2+bx+c交A(m,9),B(0,1)兩點,點C在拋物線上且橫坐標為1.(1)寫出拋物線的函數表達式;(2)判斷△ABC的形狀,并證明你的結論;(3)平面內是否存在點Q在直線AB、BC、AC距離相等,如果存在,請直接寫出所有符合條件的Q的坐標,如果不存在,說說你的理由.20.(6分)在一個不透明的布袋中裝兩個紅球和一個白球,這些球除顏色外均相同(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是.(2)甲、乙、丙三人依次從袋中摸出一個球,記錄顏色后不放回,試求出乙摸到白球的概率21.(6分)菱形的邊長為5,兩條對角線、相交于點,且,的長分別是關于的方程的兩根,求的值.22.(8分)列方程或方程組解應用題:去年暑期,某地由于暴雨導致電路中斷,該地供電局組織電工進行搶修.供電局距離搶修工地15千米.搶修車裝載著所需材料先從供電局出發,10分鐘后,電工乘吉普車從同一地點出發,結果他們同時到達搶修工地.已知吉普車速度是搶修車速度的1.5倍,求吉普車的速度.23.(8分)如圖所示,一次函數y=kx+b與反比例函數y=的圖象交于A(2,4),B(﹣4,n)兩點.分別求出一次函數與反比例函數的表達式;過點B作BC⊥x軸,垂足為點C,連接AC,求△ACB的面積.24.(10分)如圖,△DEF是由△ABC通過一次旋轉得到的,請用直尺和圓規畫出旋轉中心.25.(10分)如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D,E是AB延長線上一點,CE交⊙O于點F,連接OC、AC.(1)求證:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度數;②若⊙O的半徑為2,求線段EF的長.26.(12分)為了弘揚我國古代數學發展的偉大成就,某校九年級進行了一次數學知識競賽,并設立了以我國古代數學家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據獲獎情況繪制成如圖1和圖2所示的條形統計圖和扇形統計圖,并得到了獲“祖沖之獎”的學生成績統計表:“祖沖之獎”的學生成績統計表:分數/分80859095人數/人42104根據圖表中的信息,解答下列問題:(1)這次獲得“劉徽獎”的人數是_____,并將條形統計圖補充完整;(2)獲得“祖沖之獎”的學生成績的中位數是_____分,眾數是_____分;(3)在這次數學知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標有數字“﹣2”,“﹣1”和“2”,隨機摸出一個小球,把小球上的數字記為x放回后再隨機摸出一個小球,把小球上的數字記為y,把x作為橫坐標,把y作為縱坐標,記作點(x,y).用列表法或樹狀圖法求這個點在第二象限的概率.27.(12分)化簡:(x+7)(x-6)-(x-2)(x+1)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:俯視圖是從上面看到的圖形.從上面看,左邊和中間都是2個正方形,右上角是1個正方形,故選D.考點:簡單組合體的三視圖2、D【解析】試題解析:設現在弟弟的年齡是x歲,哥哥的年齡是y歲,由題意得y=18-x18-y=y-x故選D.考點:由實際問題抽象出二元一次方程組3、B【解析】

圓內接正六邊形的邊長是1,即圓的半徑是1,則圓的內接正方形的對角線長是2,進而就可求解.【詳解】解:∵圓內接正六邊形的邊長是1,∴圓的半徑為1.那么直徑為2.圓的內接正方形的對角線長為圓的直徑,等于2.∴圓的內接正方形的邊長是1.故選B.【點睛】本題考查正多邊形與圓,關鍵是利用知識點:圓內接正六邊形的邊長和圓的半徑相等;圓的內接正方形的對角線長為圓的直徑解答.4、B【解析】A、a+3<0是隨機事件,故A錯誤;B、a﹣3<0是必然事件,故B正確;C、3a>0是不可能事件,故C錯誤;D、a3>0是隨機事件,故D錯誤;故選B.點睛:本題考查了隨機事件.解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發生的事件.不可能事件指一定條件下,一定不發生的事件.不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.5、A【解析】

根據數軸上點的位置確定出a,b,c的范圍,判斷即可.【詳解】由數軸上點的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故選A.【點睛】考查了實數與數軸,弄清數軸上點表示的數是解本題的關鍵.6、B【解析】

解:∵∠CDB=30°,∴∠COB=60°,又∵OC=,CD⊥AB于點E,∴,解得CE=cm,CD=3cm.故選B.考點:1.垂徑定理;2.圓周角定理;3.特殊角的三角函數值.7、B【解析】

解:找到從左面看所得到的圖形,從左面可看到從左往右三列小正方形的個數為:2,3,1.故選B.8、D【解析】分析:觀察圖形可知,陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC,然后根據扇形面積公式和三角形面積公式計算即可.詳解:連接CD.∵∠C=90°,AC=2,AB=4,∴BC==2.∴陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC==.故選:D.點睛:本題考查了勾股定理,圓的面積公式,三角形的面積公式及割補法求圖形的面積,根據圖形判斷出陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC是解答本題的關鍵.9、B【解析】

連接BC,由網格求出AB,BC,AC的長,利用勾股定理的逆定理得到△ABC為等腰直角三角形,即可求出所求.【詳解】如圖,連接BC,由網格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC為等腰直角三角形,∴∠BAC=45°,則tan∠BAC=1,故選B.【點睛】本題考查了銳角三角函數的定義,解直角三角形,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.10、C【解析】

先根據直角三角形斜邊上的中線性質得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據旋轉的性質得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【詳解】∵點D為斜邊AB的中點,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點D順時針方向旋轉α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了相似三角形的判定與性質.11、A【解析】試題分析:根據垂徑定理先求BC一半的長,再求BC的長.解:如圖所示,設OA與BC相交于D點.∵AB=OA=OB=6,∴△OAB是等邊三角形.又根據垂徑定理可得,OA平分BC,利用勾股定理可得BD=所以BC=2BD=.故選A.點睛:本題主要考查垂徑定理和勾股定理.解題的關鍵在于要利用好題中的條件圓O與圓A的半徑相等,從而得出△OAB是等邊三角形,為后繼求解打好基礎.12、B【解析】

根據角平分線的定義推出△ECF為直角三角形,然后根據勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、5.68×109【解析】試題解析:科學記數法的表示形式為的形式,其中為整數.確定的值時,要看把原數變成時,小數點移動了多少位,的絕對值與小數點移動的位數相同.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.56.8億故答案為14、1【解析】

根據三角形的中位線定理得到PQ=BC,得到相似比為,再根據相似三角形面積之比等于相似比的平方,可得到結果.【詳解】解:∵P,Q分別為AB,AC的中點,∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四邊形PBCQ=S△ABC﹣S△APQ=1,故答案為1.【點睛】本題考查相似三角形的判定和性質,三角形中位線定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.15、【解析】

過點A作AE⊥DC,利用向量知識解題.【詳解】解:過點A作AE⊥DC于E,∵AE⊥DC,BC⊥DC,∴AE∥BC,又∵AB∥CD,∴四邊形AECB是矩形,∴AB=EC,AE=BC=4,∴DE===2,∴AB=EC=2=DC,∵,∴,∵,∴,∴,故答案為.【點睛】向量知識只有使用滬教版(上海)教材的學生才學過,全國絕大部分地區將向量放在高中階段學習.16、C【解析】試題分析:根據題意分別求出兩人的平均價格,然后進行比較.小菲:(24+20+16)÷6=10;小琳:(12+20+24)÷6≈1.3,則小琳劃算.考點:平均數的計算.17、2.1【解析】

先求出△ABC是∠A等于30°的直角三角形,再根據30°角所對的直角邊等于斜邊的一半求解.【詳解】解:根據題意,設∠A、∠B、∠C為k、2k、3k,則k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=BC=2.1.故答案為2.1.【點睛】本題主要考查含30度角的直角三角形的性質和三角形內角和定理,掌握30°角所對的直角邊等于斜邊的一半、求出△ABC是直角三角形是解本題的關鍵.18、【解析】

解:∵四邊形ABCO是矩形,AB=1,∴設B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關于直線OD對稱,∴OA′=OA=m,∠A′OD=∠AOD=30°∴∠A′OA=60°,過A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數(k≠0)的圖象恰好經過點A′,B,∴m?m=m,∴m=,∴k=故答案為三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=x2﹣7x+1;(2)△ABC為直角三角形.理由見解析;(3)符合條件的Q的坐標為(4,1),(24,1),(0,﹣7),(0,13).【解析】

(1)先利用一次函數解析式得到A(8,9),然后利用待定系數法求拋物線解析式;(2)先利用拋物線解析式確定C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,證明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8,BN=1,從而得到∠ABC=90°,所以△ABC為直角三角形;(3)利用勾股定理計算出AC=10,根據直角三角形內切圓半徑的計算公式得到Rt△ABC的內切圓的半徑=2,設△ABC的內心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,則AI、BI為角平分線,BI⊥y軸,PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,根據角平分線的性質可判斷點P、I、Q、G到直線AB、BC、AC距離相等,由于BI=×2=4,則I(4,1),接著利用待定系數法求出直線AI的解析式為y=2x﹣7,直線AP的解析式為y=﹣x+13,然后分別求出P、Q、G的坐標即可.【詳解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,則A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得,解得,∴拋物線解析式為y=x2﹣7x+1;故答案為y=x2﹣7x+1;(2)△ABC為直角三角形.理由如下:當x=1時,y=x2﹣7x+1=31﹣42+1=﹣5,則C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,∴∠ABC=90°,∴△ABC為直角三角形;(3)∵AB=8,BN=1,∴AC=10,∴Rt△ABC的內切圓的半徑=,設△ABC的內心為I,過A作AI的垂線交直線BI于P,交y軸于Q,AI交y軸于G,如圖,∵I為△ABC的內心,∴AI、BI為角平分線,∴BI⊥y軸,而AI⊥PQ,∴PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,∴點I、P、Q、G為△ABC的內角平分線或外角平分線的交點,它們到直線AB、BC、AC距離相等,BI=×2=4,而BI⊥y軸,∴I(4,1),設直線AI的解析式為y=kx+n,則,解得,∴直線AI的解析式為y=2x﹣7,當x=0時,y=2x﹣7=﹣7,則G(0,﹣7);設直線AP的解析式為y=﹣x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直線AP的解析式為y=﹣x+13,當y=1時,﹣x+13=1,則P(24,1)當x=0時,y=﹣x+13=13,則Q(0,13),綜上所述,符合條件的Q的坐標為(4,1),(24,1),(0,﹣7),(0,13).【點睛】本題考查了二次函數的綜合題:熟練掌握二次函數圖象上點的坐標特征、角平分線的性質和三角形內心的性質;會利用待定系數法求函數解析式;理解坐標與圖形性質是解題的關鍵.20、(1);(2).【解析】

(1)直接利用概率公式求解;

(2)畫樹狀圖展示所有6種等可能的結果數,再找出乙摸到白球的結果數,然后根據概率公式求解.【詳解】解:(1)攪勻后從袋中任意摸出1個球,摸出紅球的概率是;

故答案為:;

(2)畫樹狀圖為:

共有6種等可能的結果數,其中乙摸到白球的結果數為2,

所以乙摸到白球的概率==.【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.21、.【解析】

由題意可知:菱形ABCD的邊長是5,則AO2+BO2=25,則再根據根與系數的關系可得:AO+BO=?(2m?1),AO?BO=m2+3;代入AO2+BO2中,得到關于m的方程后,即可求得m的值.【詳解】解:∵,的長分別是關于的方程的兩根,設方程的兩根為和,可令,,∵四邊形是菱形,∴,在中:由勾股定理得:,∴,則,由根與系數的關系得:,,∴,整理得:,解得:,又∵,∴,解得,∴.【點睛】此題主要考查了菱形的性質、勾股定理、以及根與系數的關系,將菱形的性質與一元二次方程根與系數的關系,以及代數式變形相結合解題是一種經常使用的解題方法.22、吉普車的速度為30千米/時.【解析】

先設搶修車的速度為x千米/時,則吉普車的速度為1.5x千米/時,列出方程求出x的值,再進行檢驗,即可求出答案.【詳解】解:設搶修車的速度為x千米/時,則吉普車的速度為15x千米/時.由題意得:.解得,x=20經檢驗,x=20是原方程的解,并且x=20,1.5x=30都符合題意.答:吉普車的速度為30千米/時.點評:本題難度中等,主要考查學生對分式方程實際應用的綜合運用.為中考常見題型,要求學生牢固掌握.注意檢驗.23、(1)反比例函數解析式為y=,一次函數解析式為y=x+2;(2)△ACB的面積為1.【解析】

(1)將點A坐標代入y=可得反比例函數解析式,據此求得點B坐標,根據A、B兩點坐標可得直線解析式;(2)根據點B坐標可得底邊BC=2,由A、B兩點的橫坐標可得BC邊上的高,據此可得.【詳解】解:(1)將點A(2,4)代入y=,得:m=8,則反比例函數解析式為y=,當x=﹣4時,y=﹣2,則點B(﹣4,﹣2),將點A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,解得:,則一次函數解析式為y=x+2;(2)由題意知BC=2,則△ACB的面積=×2×1=1.【點睛】本題主要考查一次函數與反比例函數的交點問題,熟練掌握待定系數法求函數解析式及三角形的面積求法是解題的關鍵.24、見解析【解析】試題分析:首先根據旋轉的性質,找到兩組對應點,連接這兩組對應點;然后作連接成的兩條線段的垂直平分線,兩垂直平分線的交點即為旋轉中心,據此解答即可.解:如圖所示,點P即為所求作的旋轉中心.25、(1)證明見解析;(2)①∠OCE=45°;②EF=-2.【解析】【試題分析】(1)根據直線與⊙O相切的性質,得OC⊥CD.又因為AD⊥CD,根據同一平面內,垂直于同一條直線的兩條直線也平行,得:AD//OC.∠DAC=∠OCA.又因為OC=OA,根據等邊對等角,得∠OAC=∠OCA.等量代換得:∠DAC=∠OAC.根據角平分線的定義得:AC平分∠DAO.(2)①因為AD//OC,∠DAO=105°,根據兩直線平行,同位角相等得,∠EOC=∠DAO=105°,在中,∠E=30°,利用內角和定理,得:∠OCE=45°.②作OG⊥CE于點G,根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論