信號與系統 奧本海姆 課件_第1頁
信號與系統 奧本海姆 課件_第2頁
信號與系統 奧本海姆 課件_第3頁
信號與系統 奧本海姆 課件_第4頁
信號與系統 奧本海姆 課件_第5頁
已閱讀5頁,還剩101頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

CHAPTER4

THECONTINUOUS-TIMEFOURIERTRANSFORM第4章連續時間傅立葉變換1Thecontinuous-timeFouriertransform(連續時間傅立葉變換);Relationshipbetween

FourierseriesandFouriertransform(傅立葉級數與傅立葉變換之間的關系);Propertiesofthecontinuous-timeFouriertransform(傅立葉變換的性質);Frequencyresponseandfrequencyanalysis(系統的頻率響應及系統的頻域分析);Maincontent:2

Inpractice,aratherlargeclassofsignalsareaperiodicsignals.Howtheaperiodicsignalsshouldbedecomposed,whatisthespectrumofaperiodicsignals,howshouldwegettheLTIsystemresponsetoanaperiodicsignalaretheissuestobesolvedinthischapter.3

Inthetimedomain,whenaperiodicsignalwithaninfiniteperiod,thentheperiodicsignalbecomesanaperiodicsignal;ontheotherhand,ifanyaperiodicsignalisperiodicallyextended,wewillformaperiodicsignal.

4.0Introduction4IntheFourierseriesrepresentationofaperiodicsignal,astheperiodincreasesthefundamentalfrequencydecreasesandtheharmonicallyrelatedcomponentsbecomecloserinfrequency.Astheperiodbecomesinfinite,thefrequencycomponentsformacontinuumandtheFourierseriessumbecomesanintegral.5(非周期信號的表示—連續時間傅立葉變換)4.1RepresentationofAperiodicSignals:TheContinuous-TimeFourierTransform4.1.1DevelopmentoftheFouriertransformRepresentationofanAperiodicsignal(1)example:Overoneperiodofthecontinuous-timeperiodicsquarewave:隨T增大而減小并最終趨于0,原分析方法失效,但譜線長度〔振幅〕雖同為無窮小,但它們的大小并不相同,相對值仍有差異,引入新的變量—頻譜密度函數。6不變時7WecanregardTakassamplesofanenvelopefunction,specifically---continuousvariable---theenvelopeofTak---equallyspacedsamplesofthisenvelope8AsTincreaseswithT1fixed,thefundamentalfrequencydecreases.wehavetwoobservations:A.Theharmonicsarepackedmoreandmoreclosertoeachother;B.However,theshape(theenvelope)ofthespectrumremainsthesame.Whatdoweknowfromtheabovegraph?T=4T1T=8T1T=16T19AsTincreaseswithT1fixed,thefundamentalfrequencydecreases,then:

A.thefundamentalfrequencydecreases,theFourierseriescoefficientsmultipliedbyTbecomesmoreandmorecloselyspacedsamplesoftheenvelope,sothatthesetofFourierseriescoefficientsapproachestheenvelopefunctionasT→∞

B.However,theshape(theenvelope)ofthespectrumremainsthesame.10(2)GofromperiodictoaperiodicConstructaaperiodicsignalx(t)fromtheperiodicsignal,letForperiodicsignal,wehaveitsFourierseries:Foraperiodicsignalx(t):WhenHowtorepresenttheaperiodicsignalx(t)?11As,UseX(jω)todenotethisintegral,thenwehave:spectrumofx(t)Fouriertransformofx(t)周期信號的頻譜就是與它相對應的非周期信號頻譜的樣本CTFT12SinceNote:AlthoughX(jω)isoftenabbreviatedas“spectrum〞,itisdifferentfromak,whichisthespectrumofperiodicsignals.X(jω)isinfactspectrum-densityfunction(頻譜密度函數:具有頻譜隨頻率分布的物理含義)13Thus,weobtainInverseFouriertransformInverseCTFT14Fouriertransformpair:orImportant:

Theaperiodicsignalscanstillberepresentedasalinearcombinationofcomplexexponentials.Thecomplexcomponentwithfrequenceωhave“amplitude〞:15Anusefulrelationship:whereX(jω)istheFouriertransformofx(t),akistheFouriercoefficientsof.x(t)isoneperiodoftheperiodicsignalor周期信號的頻譜是對應的非周期信號頻譜的樣本;而非周期信號的頻譜是對應的周期信號頻譜的包絡。16Example:periodicsquarewave:Soaperiodicsignalx(t):17

ThederivationoftheFouriertransformsuggeststhattheconvergenceofFourierseriesshouldapplytotheconvergenceofFouriertransform.

4.1.2.ConvergenceofFourierTransforms18ThisshowsthatiftheenergyisfinitethentheFouriertransformmustexist.2.

Dirichlet

conditionsTwosetsofconditions:1.Ifthenexist.(1)x(t)isabsolutelyintegrable.

(2)x(t)haveafinitenumberofmaximaandminimawithinanyfiniteinterval.(3)x(t)haveafinitenumberofdiscontinuitywithinanyfiniteinterval.Furthermore,eachofthesediscontinuitiesmustbefinite.19

Note2:

Thesetwosetsofconditionsarenotequivalent.Forexample:isasquareintegrable,butnotabsolutelyintegrable.

Note1:thetwosetsofconditionsaresufficienttoguaranteethatasignalhasaFouriertransform.Ifimpulsefunctionsarepermittedinthetransform,somesignalssuchasperiodicsignals,whichareneitherabsolutelyintegrablenorsquareintegrableoveraninfiniteinterval,canbeconsideredtohaveFouriertransforms.204.1.3.ExamplesofContinuous-TimeFT:1.010212.

Conclusion:TheFouriertransformof

real-evensignalisreal-evenfunction.

Inthiscase10223.001

Thatis,theunitimpulsehasaFouriertransformconsistingofequalcontributionatallfrequencies.Therefore,theunitimpulseresponsecanfullydescribethecharacteristicsofaLTIsystem,andhasanimportantsignificanceinthesignalandsystemanalysis.物理意義:在時域中變化異常劇烈的沖激函數包含幅度相等的所有頻率分量。因此,這種頻譜常稱為“均勻譜“或〞白色譜“。(white-spectrum)23

Clearly,theofreplacedbyandthenmultipliedby.Thenwecangetthecorrespondingperiodicsignalspectrum

4.rectangularpulsesignal:24101000TheimpactofspectrumondifferentpulsewidthTherelationshipbetweenthetimeandfrequencydomainsisinverse.2526(稱為理想低通濾波器)5.Ideallow-passfilter10027ForallωInthiscaseTherelationshipbetweenthetimeandfrequencydomainsisinverse.28

Atthesametimewecanseethatthereisainverserelationshipbetweenthetimeandfrequencydomains.AsWincreases,becomesbroader,whilethemainpeakofx(t)att=0becomeshigherandthewidthofthefirstlobeofthissignalbecomesnarrower,andviceversa.

Ontheexample,if,willbecomeanimpulseand29Dualitycanbeillustratedasfollows

:101000Therelationshipbetweenthesincfunctionandarectangularpulseisduality

.30If,then∵∴6.317.324.1.4.信號的帶寬(BandwidthofSignals)(complementary)由信號的頻譜可以看出:信號的主要能量總是集中于低頻分量。另一方面,傳輸信號的系統都具有自己的頻率特性。因而,工程中在傳輸信號時,沒有必要一定要把信號的所有頻率分量都有效傳輸,而只要保證將占據信號能量主要局部的頻率分量有效傳輸即可。為此,需要對信號定義帶寬。通常有如下定義帶寬的方法:33

下降到最大值的時對應的頻率范圍,此時帶內信號分量占有信號總能量的1/2。1.0例如342.對包絡是形狀的頻譜,通常定義主瓣寬度(即頻譜第一個零點內的范圍)為信號帶寬。以矩形脈沖為例,按帶寬的定義,可以得出,脈寬乘以帶寬等于常數C(脈寬帶寬積)。這清楚地反映了頻域和時域的相反關系。

10035(周期信號的傅立葉變換)

havedeveloped:FourierseriesforperiodicsignalsandFouriertransformforaperiodicsignals.WecanalsodevelopFouriertransformrepresentationforperiodicsignalstoallowustoconsiderbothperiodicandaperiodicsignalswithinaunifiedcontext.However,periodicsignaldoesnotsatisfyDirichletconditions,andthereforeitisimpossibletodirectlyobtaintheFouriertransformfromitsdefinition.4.2TheFourierTransformationofPeriodicSignals36considerIf

thenThisequationshowsthattheFouriertransformofthecomplexexponentialsignalisanimpulselocatedatwithitsarea2π.37Foranarbitraryperiodicsignalx(t),firstrepresentingx(t)withtheFourierseriesasSoTheFouriertransformofperiodicsignal38TheFouriertransformofaperiodicsignalwithFourierseriescoefficients{ak}is:atrainofimpulsesoccurringattheharmonicallyrelatedfrequencies;theareaoftheimpulseatthekthharmonicfrequencykω0is2πtimesthekthFourierseriescoefficientak.Foraperiodicsignalx(t)withtheperiodT=239

求取方法:2.利用定義求周期信號的頻譜1.利用傅立葉變換求周期信號的頻譜其中408:

9:4110:均勻沖激串010Therelationshipbetweenthetimeandfrequencydomainsisinverse.4211.Periodicrectangularpulse01

–ω0

ω0X(jω)

π

22ω43(連續時間傅立葉變換的性質)Providingasignificantamountofinsightinto:1)thetransform;2)therelationshipbetweenthetime-domainandfrequency-domaindescriptionsofasignal;3)therelationshipbetweentheCFSandCTFTrepresentationofaperiodicsignal.ReducingthecomplexityoftheevaluationofFouriertransformorinversetransform.4.3PropertiesoftheContinuous-TimeFourierTransform4412:1.Linearity(線性):thenIf452.TimeShifting(時移):thenIfConsequence:

asignalwhichisshiftedintimedoesnothavethemagnitude

ofitsFouriertransformaltered,butintroduceintoaphaseshift.Refertop302example4.94613E047frequencyshifting(頻移〕ifthenExample:48頻移性質493.ConjugationandConjugateSymmetry(共軛對稱性)thenIfSo50

Ifisarealsignal,thenthen

Fromrealpartisanevenfunctionimaginarypartisanoddfunction

FromThemagnitudeisanevenfunctionThephaseisanoddfunctionForarealsignal:51

IfThesignalisbothrealandevenConsequently:TheFouriertransformofrealevensignalisanrealevenfunction.

If∵∴ThesignalisbothrealandoddConsequently:TheFouriertransformofrealoddsignalisanimaginaryandodd.52

Ifthen:Forarealsignal:5314:Thespectrumof101/20-1/21/20canbebrokenintoevenandoddpart54554.DifferentiationandIntegration(時域微分與積分)Thisisparticularlyimportantpropertybecauseitreplacestheoperationofdifferentiationinthetimedomainwiththatofmultiplicationbyjωinthefrequencydomain.(bydifferentiatingbothsidesof)Example:determinetheFToftheunitstepFrompropertyofintegration:Weobtain:thenIf56E57585.時域和頻域的尺度變換:ScalingWhen,weobtainThescalingpropertyisanotherexampleoftheinverserelationshipbetweenthetimeandfrequencydomain.thenIfCompression(expansion)inthetimedomaincorrespondingtoextension(compression)inthefrequencydomainTherelationshipbetweenthetimeandfrequencydomainsisinverse.5917:606.對偶性:DualityIfthenProof1:Proof2:

6162FromWeobtainFrequencyShiftingFromusingdualityusingTimeShiftingusingdualityByduality:somepropertiesinthetimedomaincorrespondstotheonesinthefrequencydomain(1)、timeshiftingfrequencyshiftingdualityTimeshiftingTimereversalduality63FromWeobtainSo2、DifferentiationinFrequencyProof164FromWeobtaindifferentiationintimedualityDifferentiationinFrequencyProof2:usingthedualitypropertydualityTimedomaindualityTimereversal65設求16:663、integrationinfrequencyintegrationintimedualityfromWeobtainintegrationinfrequencydualityTimedomaindualityTimereversal6718:6819:697.Parseval’sRelation:Ifthen

Parseval’srelationsaysthatthistotalenergymaybedeterminedeitherbycomputingenergyperunittime()andintegratingoveralltimeorbycomputingtheenergyperunitfrequency()andintegratingoverallfrequencies.energy-densityspectrum〔能量譜密度〕704.4TheConvolutionProperty(卷積性質)一.TheConvolutionProperty:thenIf71InfactWeobtaincanbedecomposedintoalinearcombinationofcomplexexponentialsignals,andforeachtheresponseoftheLTIsystemwillbetheweightedcomplexexponentialmultipliedbycorrespondingeigenvalue.Thiseigenvalueis:Soshows:Proof172theconvolutionintegral:TheFouriertransformofy(t)is:

Proof2731.TheFouriertransform

mapstheconvolutionoftwosignals

into

theproductoftheirFouriertransforms.2.ThefrequencyresponseH(jω),istheFouriertransformoftheimpulseresponse,

alsocancharacterizeanLTIsystem,justasitsinversetransform,theunitimpulseresponseh(t).3.ThefrequencyresponsecannotbedefinedforeveryLTIsystem.Conclusion:74isoneofthreeDirichletconditions.Assumingthath(t)satisfiestheothertwoconditions,thenweseethatastableLTIsystemhasafrequencyresponseH(jω).InordertoexamineunstableLTIsystem,wewilldeveloptheLaplacetransform.IfanLTIsystemisstable,thenitsimpulseresponseintegrable;thatis75二.FrequencyResponseofLTIsystem(LTI系統的頻域分析法):

ToanalyzetheLTIsystemsinfrequencydomain

,wehavethefollowingsteps:

1.Determinethe

Fouriertransform

2.find

3.4.76totheinputsignalConsidertheresponseofanLTIsystemwithimpulseresponseTheFouriertransformsofx(t)andh(t)areTherefore,

ExpandingY(jω)inapartial-fractionexpansion

whereAandBareconstantstobedetermined.

Whenb≠a

20:77Therefore,78

Whenb=a

Consequently,Wecanusethedifferentiationinthefrequency-domainproperty.Thus,79Determinetheresponseofanideallow-passfiltertoaninputsignalx(t)thathastheformofasincfunction.Thatis,Theimpulseresponseoftheideallow-passfilterisofasimilarform:21:80Therefore,Finally,theinverseFouriertransformofY(jω)isgivenbyThatis,dependingonwhichofωiandωcissmaller,theoutputisequaltoeitherx(t)orh(t).814.5TheMultiplicationProperty(相乘性質)Ifthen例1:FrequencyShifting82ThispropertycanbederivedUsingdualitypropertytogetherwiththeconvolutionproperty.s1s2s3s483Multiplicationofonesignalbyanothercanbethoughtofasusingonesignaltoscaleor

modulate

theamplitudeoftheother,andconsequently,themultiplicationoftwosignalsisoftenreferredtoas

amplitudemodulation.Themodulationproperty〔調制定理〕:s(t)p(t)r(t)modulationproperty〔調制定理〕84例2.Sinusoidalamplitudemodulation(正弦幅度調制)108501/2

正弦幅度調制等效于在頻域將調制信號的頻譜搬移到載頻位置。86例3.

Synchronousdemodulation(同步解調):1/21/41/487此時,用一個頻率特性為的系統即可從恢復出。20只要即可。具有此頻率特性的LTI系統稱為理想低通濾波器。例4.

Frequency-SelectFilteringwithVariableCenterFrequency(中心頻率可變的帶通濾波器):88A1理想低通的頻率響應891等效帶通濾波

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論