




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、天津市紅橋區2014-2015學年高一上學期期末數學試卷一、選擇題(共12小題,每小題3分,滿分36分)1(3分)下列各命題正確的是()A終邊相同的角一定相等B第一象限角都是銳角C銳角都是第一象限角D小于90度的角都是銳角2(3分)求值sin210°=()ABCD3(3分)=()ABCD4(3分)如圖所示,四邊形ABCD是梯形,ADBC,則=()ABCD5(3分)若,則等于()ABCD6(3分)已知,都是單位向量,則下列結論正確的是()A=1B2=2CD=07(3分)已知cos=,cos(+)=,且,為銳角,那么sin的值是()ABCD8(3分)函數圖象的一條對稱軸方程是()ABx=
2、0CD9(3分)已知sin+cos=,且(0,),則tan的值為()ABCD10(3分)有下列四種變換方式:向左平移,再將橫坐標變為原來的; 橫坐標變為原來的,再向左平移;橫坐標變為原來的,再向左平移; 向左平移,再將橫坐標變為原來的;其中能將正弦曲線y=sinx的圖象變為的圖象的是()A和B和C和D和11(3分)下列函數中,圖象的一部分如圖所示的是()Ay=sin(x+)By=sin(2x)Cy=cos(4x)Dy=cos(2x)12(3分)在上滿足sinx的x的取值范圍是()ABCD二、填空題(本大題共8小題,每小題4分,共32分)13(4分)|=1,|=2,且,則與的夾角為14(4分)已
3、知|=4,|=5,與的夾角為60°,那么|3|=15(4分)一個扇形的弧長與面積的數值都是5,這個扇形中心角的弧度數是16(4分)是第二象限角,P(x,)為其終邊上一點,且cos=,則sin=17(4分)若tan=2,tan()=3,則tan(2)的值為18(4分)函數y=tan4x的最小正周期T=19(4分)函數y=sinx,x,則y的取值范圍是20(4分)下列各組函數中,偶函數且是周期函數的是(填寫序號)y=sinx;y=cosx;y=tanx;y=sin|x|;y=|sinx|三、解答題(本大題共4小題,共32分,解答時寫出必要的過程)21(8分)化簡:sin(2)cos(2)
4、+cos2()22(7分)四邊形ABCD中,(1)若,試求x與y滿足的關系式;(2)滿足(1)的同時又有,求x,y的值及四邊形ABCD的面積23(7分)已知cos()=,sin()=,(1)求cos();(2)求tan(+)24(10分)已知函數f(x)=2sinxcosx+2cos2x1(1)求函數f(x)的最小正周期;(2)求函數f(x)的單調減區間;(3)在如圖坐標系里用五點法畫出函數f(x),x的圖象x天津市紅橋區2014-2015學年高一上學期期末數學試卷參考答案與試題解析一、選擇題(共12小題,每小題3分,滿分36分)1(3分)下列各命題正確的是()A終邊相同的角一定相等B第一象限
5、角都是銳角C銳角都是第一象限角D小于90度的角都是銳角考點:任意角的概念;象限角、軸線角 專題:閱讀型分析:明確終邊相同的角、銳角、第一象限角、小于90°的角的定義,通過舉反例排除某些選項,從而選出答案解答:解:30°和390°是終邊相同的角,但30°390°,故可排除A第一象限角390°不是銳角,故可排除B30°是小于90°的角,但它不是銳角,故可排除D銳角是第一象限角是正確的,故選C點評:本題考查終邊相同的角、銳角、第一象限角、小于90°的角的定義,通過舉反例說明某個命題不成立,是一種簡單有效的方法2
6、(3分)求值sin210°=()ABCD考點:運用誘導公式化簡求值 分析:通過誘導公式得sin 210°=sin(210°180°)=sin30°得出答案解答:解:sin 210°=sin(210°180°)=sin30°=故答案為D點評:本題主要考查三角函數中的誘導公式的應用可以根據角的象限判斷正負3(3分)=()ABCD考點:二倍角的余弦 分析:看清本題的結構特點符合平方差公式,化簡以后就可以看出是二倍角公式的逆用,最后結果為cos,用特殊角的三角函數得出結果解答:解:原式=cos=,故選D點評:要深
7、刻理解二倍角公式和兩角和差的正弦和余弦公式,從形式和意義上來認識,對公式做到正用、逆用、變形用,本題就是逆用余弦的二倍角公式4(3分)如圖所示,四邊形ABCD是梯形,ADBC,則=()ABCD考點:向量的加法及其幾何意義 專題:規律型分析:根據圖形,由向量加法的三角形法則依次求和,即可得到和向量的表達式,從圖形中找出相對應的有向線段即可解答:解:由題意,如圖=故選B點評:本題考點是向量的加法及其幾何意義,考查向量加法的圖形表示及加法規則,是向量加法中的基本題型5(3分)若,則等于()ABCD考點:平面向量的坐標運算;平面向量坐標表示的應用 專題:計算題分析:以和為基底表示,設出系數,用坐標形式
8、表示出兩個向量相等的形式,根據橫標和縱標分別相等,得到關于系數的二元一次方程組,解方程組即可解答:解:,(1,2)=m(1,1)+n(1,1)=(m+n,mn)m+n=1,mn=2,m=,n=,故選B點評:用一組向量來表示一個向量,是以后解題過程中常見到的,向量的加減運算是用向量解決問題的基礎,要學好運算,才能用向量解決立體幾何問題,三角函數問題等6(3分)已知,都是單位向量,則下列結論正確的是()A=1B2=2CD=0考點:平面向量數量積的運算 專題:計算題;平面向量及應用分析:,都是單位向量,結合單位向量的概念,向量數量積,向量共線的基礎知識解決解答:解:根據單位向量的定義可知,|=|=1
9、,但夾角不確定 且=1,故選B點評:本題只要掌握單位向量的概念,向量數量積,向量共線的基礎知識便可解決屬于概念考查題7(3分)已知cos=,cos(+)=,且,為銳角,那么sin的值是()ABCD考點:兩角和與差的正弦函數 專題:三角函數的求值分析:由同角三角函數的基本關系可得sin和sin(+)的值,代入sin=sin=sin(+)coscos(+)sin計算可得解答:解:,為銳角,cos=,sin=,又cos(+)=,sin(+)=,sin=sin=sin(+)coscos(+)sin=故選:A點評:本題考查兩角和與差的三角函數公式,涉及同角三角函數的基本關系,屬基礎題8(3分)函數圖象的
10、一條對稱軸方程是()ABx=0CD考點:正弦函數的對稱性 專題:計算題分析:直接利用正弦函數的對稱軸方程,求出函數 的圖象的一條對稱軸的方程,即可解答:解:y=sinx的對稱軸方程為x=k ,所以函數 的圖象的對稱軸的方程是解得x=,kZ,k=0時顯然C正確,故選C點評:本題是基礎題,考查三角函數的對稱性,對稱軸方程的求法,考查計算能力,推理能力9(3分)已知sin+cos=,且(0,),則tan的值為()ABCD考點:同角三角函數基本關系的運用 專題:計算題;三角函數的求值分析:利用同角三角函數間的基本關系可求得sincos=,從而可求得sin與cos,繼而可得答案解答:解:sin+cos=
11、,1+sin2=,sin2=,又0,sin0,cos0,(sincos)2=1sin2=,sincos=,由得:sin=,cos=tan=故選:C點評:本題主要考查了三角函數的恒等變換及化簡求值考查了考生對三角函數基礎公式的熟練應用,屬于中檔題10(3分)有下列四種變換方式:向左平移,再將橫坐標變為原來的; 橫坐標變為原來的,再向左平移;橫坐標變為原來的,再向左平移; 向左平移,再將橫坐標變為原來的;其中能將正弦曲線y=sinx的圖象變為的圖象的是()A和B和C和D和考點:函數y=Asin(x+)的圖象變換 專題:計算題分析:直接利用函數的圖象的平移變換,由正弦曲線y=sinx的圖象變為的圖象
12、,即可得到選項解答:解:正弦曲線y=sinx的圖象向左平移,得到函數的圖象,再將橫坐標變為原來的,變為的圖象;將正弦曲線y=sinx的圖象橫坐標變為原來的,得到函數y=sin2x的圖象,再向左平移,變為的圖象;故選A點評:本題主要考查三角函數的平移三角函數的平移原則為左加右減上加下減注意兩種變換的方式的區別11(3分)下列函數中,圖象的一部分如圖所示的是()Ay=sin(x+)By=sin(2x)Cy=cos(4x)Dy=cos(2x)考點:由y=Asin(x+)的部分圖象確定其解析式 專題:三角函數的圖像與性質分析:根據題意,設出y=sin(x+),利用函數圖象求出與,得出函數解析式,從而選
13、出正確的答案解答:解:根據題意,設y=sin(x+),(,);=()=,解得T=,=2;又x=時,y=sin(2×+)=1,+=,解得=;y=sin(2x+),即y=cos=cos(2x)=cos(2x)故選:D點評:本題考查了利用函數的圖象求三角函數解析式的問題,是基礎題目12(3分)在上滿足sinx的x的取值范圍是()ABCD考點:正弦函數的單調性 專題:計算題分析:利用三角函數線,直接得到sinx的x的取值范圍,得到正確選項解答:解:在上滿足sinx,由三角函數線可知,滿足sinx,的解,在圖中陰影部分,故選B點評:本題是基礎題,考查三角函數的求值,利用單位圓三角函數線,或三角
14、函數曲線,都可以解好本題,由于是特殊角的三角函數值,可以直接求解二、填空題(本大題共8小題,每小題4分,共32分)13(4分)|=1,|=2,且,則與的夾角為120°考點:數量積表示兩個向量的夾角 專題:計算題分析:根據,且可得進而求出=1然后再代入向量的夾角公式cos=再結合即可求出解答:解:,且()=0|=1=1|=2cos=120°故答案為120°點評:本題主要考查了利用數量積求向量的夾角,屬常考題,較易解題的關鍵是熟記向量的夾角公式cos=同時要注意這一隱含條件!14(4分)已知|=4,|=5,與的夾角為60°,那么|3|=考點:平面向量數量積的
15、含義與物理意義;向量的模;向量的線性運算性質及幾何意義 專題:計算題;平面向量及應用分析:由數量積的運算,可先求,求其算術平方根即得答案解答:解:由題意可得:=9=9×426×4×5×cos60°+52=109故=,故答案為:點評:本題考查向量的數量積的運算和模長公式,屬基礎題15(4分)一個扇形的弧長與面積的數值都是5,這個扇形中心角的弧度數是考點:弧長公式 專題:三角函數的求值分析:設這個扇形中心角的弧度數為,半徑為r利用弧長公式、扇形的面積計算公式即可得出解答:解:設這個扇形中心角的弧度數為,半徑為r一個扇形的弧長與面積的數值都是5,5=
16、r,5=,解得=故答案為:點評:本題考查了弧長公式、扇形的面積計算公式,屬于基礎題16(4分)是第二象限角,P(x,)為其終邊上一點,且cos=,則sin=考點:任意角的三角函數的定義;象限角、軸線角 專題:計算題分析:先求PO的距離,根據三角函數的定義,求出cos,然后解出x的值,注意是第二象限角,求解sin解答:解:由題意|op|=,所以cos=,因為是第二象限角,解得:x=,cos=,sin=故答案為:點評:本題考查任意角的三角函數的定義,象限角、軸線角,考查計算能力,是基礎題17(4分)若tan=2,tan()=3,則tan(2)的值為考點:兩角和與差的正切函數 專題:計算題分析:把t
17、an=2,tan()=3代入 tan(2)=tan()= 求得結果解答:解:tan(2)=tan()=,故答案為 點評:本題考查兩角差正切公式的應用,角的變換是解題的關鍵18(4分)函數y=tan4x的最小正周期T=考點:三角函數的周期性及其求法 專題:三角函數的圖像與性質分析:由條件根據函數y=Atan(x+)的周期為 ,可得結論解答:解:函數y=tan4x的最小正周期T=,故答案為:點評:本題主要考查函數y=Atan(x+)的周期性,利用了函數y=Atan(x+)的周期為 ,屬于基礎題19(4分)函數y=sinx,x,則y的取值范圍是考點:正弦函數的圖象 專題:三角函數的圖像與性質分析:由
18、條件利用正弦函數的定義域和值域,求得y的取值范圍解答:解:由x,可得y=sinx,故答案為:點評:本題主要考查正弦函數的定義域和值域,屬于基礎題20(4分)下列各組函數中,偶函數且是周期函數的是(填寫序號)y=sinx;y=cosx;y=tanx;y=sin|x|;y=|sinx|考點:三角函數的周期性及其求法;函數奇偶性的性質;余弦函數的圖象 專題:三角函數的圖像與性質分析:判斷各個函數的奇偶性和周期性,從而得出結論解答:解:由于y=sinx為奇函數,故排除;由于y=cosx為偶函數,且它的周期為2,故滿足條件;由于y=tanx為奇函數,故排除;由于y=sin|x|不是周期函數,故排除;由于
19、函數y=|sinx|為偶函數,且周期為2=,故滿足條件,故答案為:點評:本題主要考查三角函數的奇偶性和周期性,屬于基礎題三、解答題(本大題共4小題,共32分,解答時寫出必要的過程)21(8分)化簡:sin(2)cos(2)+cos2()考點:運用誘導公式化簡求值;同角三角函數基本關系的運用 專題:三角函數的求值分析:原式利用誘導公式化簡,再利用同角三角函數基本關系變形,整理即可得到結果解答:解:原式=(sin)cos+cos2+=sin2+cos2+=1+點評:此題考查了運用誘導公式化簡求值,以及同角三角函數基本關系的運用,熟練掌握誘導公式是解本題的關鍵22(7分)四邊形ABCD中,(1)若,
20、試求x與y滿足的關系式;(2)滿足(1)的同時又有,求x,y的值及四邊形ABCD的面積考點:平行向量與共線向量;數量積判斷兩個平面向量的垂直關系 專題:計算題分析:(1)根據所給的三個向量的坐標,寫出要用的的坐標,根據兩個向量平行的充要條件寫出關系式,整理成最簡形式(2)寫出向量的坐標,根據兩個向量垂直的充要條件寫出關系式,結合上一問的結果,聯立解方程,針對于解答的兩種情況,得到四邊形的面積解答:解:(1)x(y+2)y(x4)=0,化簡得:x+2y=0;(2),(x+6)(x2)+(y+1)(y3)=0化簡有:x2+y2+4x2y15=0,聯立解得或則四邊形ABCD為對角線互相垂直的梯形當此時當,此時點評:本題考查向量垂直和平行的充要條件,結合向量的加減運算,利用方程思想,是一個綜合問題,運算量比較大,注意運算過程不要出錯,可以培養學生的探究意識和應用意識,體會向量的工具作用23(7分)已知cos()=,sin()=,(1)求cos();(2)求tan(+)考點:兩角和與差的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 七年級地理上冊 1.1 地球和地球儀教學設計 新人教版
- 藏族民間舞蹈的風格特點
- 美術四年級上冊7.飛天(二)教案
- 人教版小學二年級上冊數學 2.3.3 加減混合 課時練
- 專業合同勞務派遣服務 - 香港勞務指南
- 2025年新員工入職銷售崗位勞動合同電子版模板
- 2025家具采購合同模板
- 2025年公有土地有償使用合同
- 2025租房合同范本:房屋租賃合同格式
- 2025別墅買賣合同(豪華版)
- 2020年單招烹飪高考試卷
- 護士優秀帶教老師先進事跡(共3篇)
- 《人工智能對會計職業的影響及對策(論文)6200字》
- 2023年鄭州醫藥健康職業學院單招綜合素質考試筆試題庫及答案解析
- 后廚員工績效考核表
- 建筑物理聲復習歸納總結
- 污水處理池 (有限空間)作業安全告知牌及警示標志
- 海為工業物聯網整體解決課件
- 電子商務數據分析教學課件匯總完整版電子教案
- (高清正版)T_CAGHP 065.3—2019 地質災害防治工程預算定額(試行)(下冊)
- 浙江省公安民警心理測驗考試題目(含答案)
評論
0/150
提交評論