DCT離散余弦變換學習教案_第1頁
DCT離散余弦變換學習教案_第2頁
DCT離散余弦變換學習教案_第3頁
DCT離散余弦變換學習教案_第4頁
DCT離散余弦變換學習教案_第5頁
已閱讀5頁,還剩2頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、會計學1DCT離散余弦變換離散余弦變換1. 正變換10100, 0 , ),(1)0 , 0(NxNyvuyxfNF10101, 2 , 1 0, , ) 12(2cos),(2)0 ,(NxNyNuvuxNyxfNuF10101, 2 , 1 0, , ) 12(2cos),(2), 0(NxNyNvuvyNyxfNvF1, 2 , 1,) 12(2cos) 12(2cos),(2),(1010NvuvyNuxNyxfNvuFNxNyF(0,0)F(u,0)F(0,v)F(u,v)第1頁/共7頁2. 反變換11111111) 12(2cos) 12(2cos),(2 ) 12(2cos),

2、0(2 ) 12(2cos)0 ,(2 )0 , 0(1),(NuNvNvNuvyNuxNvuFNvyNvFNuxNuFNFNyxf第2頁/共7頁3. 舉例DCT圖像經DCT后, 能量集中于頻率平面的左上角。DCT用于圖像數據壓縮。第3頁/共7頁一維離散余弦變換:CfF 正變換:FCfT反變換:二維離散余弦變換:TCfCF 正變換:FCCfT反變換:C為離散余弦變換矩陣,CT為C的轉置矩陣第4頁/共7頁NNNNNNNNNNNNNNC2) 12)(12(cos2) 1(3cos2) 1(cos2) 12(cos23cos2cos2121212變換矩陣C為:43cos4cos2121C當N=2時,

3、變換矩陣C為:821cos815cos89cos83cos47cos45cos43cos4cos87cos85cos83cos8cos2121212121C當N=4時,變換矩陣C為:第5頁/共7頁離散余弦變換的矩陣算法舉例:已知:0000011001100000),(yxf用矩陣算法求其DCT。fCCvuFT),(02. 012. 003. 017. 012. 059. 018. 088. 003. 018. 005. 026. 017. 088. 026. 032. 1由此例可看出:DCT將能量集中于頻率平面的左上角。27. 065. 065. 027. 05 . 05 . 05 . 05 . 065. 027. 027. 065. 05 . 05 . 05 . 05 . 0 0000011001100000 27. 05 . 065. 05 . 065. 05 . 027. 0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論