2025屆安徽省無為縣九上數學期末教學質量檢測試題含解析_第1頁
2025屆安徽省無為縣九上數學期末教學質量檢測試題含解析_第2頁
2025屆安徽省無為縣九上數學期末教學質量檢測試題含解析_第3頁
2025屆安徽省無為縣九上數學期末教學質量檢測試題含解析_第4頁
2025屆安徽省無為縣九上數學期末教學質量檢測試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省無為縣九上數學期末教學質量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖所示的是幾個完全相同的小正方體搭建成的幾何體的俯視圖,其中小正方形內的數字為對應位置上的小正方體的個數,則該幾何體的左視圖為()A. B. C. D.2.下列函數中,的值隨著逐漸增大而減小的是()A. B. C. D.3.如圖,如果∠BAD=∠CAE,那么添加下列一個條件后,仍不能確定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AEDC.= D.=4.向空中發射一枚炮彈,第秒時的高度為米,且高度與時間的關系為,若此炮彈在第秒與第秒時的高度相等,則在下列時間中炮彈所在高度最高的是()A.第秒 B.第秒 C.第秒 D.第秒5.如圖,的半徑弦于點,連結并延長交于點,連結.若,,則的長為()A.5 B. C. D.6.三角形兩邊長分別是和,第三邊長是一元二次方程的一個實數根,則該三角形的面積是()A. B. C.或 D.或7.如圖,在同一平面直角坐標系中,反比例函數與一次函數y=kx?1(k為常數,且k≠0)的圖象可能是()A. B. C. D.8.某企業五月份的利潤是25萬元,預計七月份的利潤將達到49萬元.設平均月增長率為x,根據題意可列方程是()A.25(1+x%)2=49 B.25(1+x)2=49C.25(1+x2)=49 D.25(1-x)2=499.已知⊙O的半徑為13,弦AB//CD,AB=24,CD=10,則AB、CD之間的距離為A.17 B.7 C.12 D.7或1710.如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,若旋轉角為20°,則∠1為()A.110° B.120° C.150° D.160°11.如圖是二次函數y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的兩根分別為-3和1;④a-2b+c≥0,其中正確的命題是()A.①②③ B.①④ C.①③ D.①③④12.是關于的一元一次方程的解,則()A. B. C.4 D.二、填空題(每題4分,共24分)13.若關于的一元二次方程有實數根,則的值可以為________(寫出一個即可).14.如圖,在四邊形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,點P從點A出發,以3個單位/s的速度沿AD→DC向終點C運動,同時點Q從點B出發,以1個單位/s的速度沿BA向終點A運動,在運動期間,當四邊形PQBC為平行四邊形時,運動時間為__________秒.15.如圖,某數學興趣小組將邊長為4的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細),則所得的扇形DAB的面積為__________.16.已知一個不透明的盒子中裝有3個紅球,2個白球,這些球除顏色外均相同,現從盒中任意摸出1個球,則摸到紅球的概率是________

.17.已知,如圖,,,且,則與__________是位似圖形,位似比為____________.18.如圖所示,在中,、相交于點,點是的中點,聯結并延長交于點,如果的面積是4,那么的面積是______.三、解答題(共78分)19.(8分)天空中有一個靜止的廣告氣球C,從地面A點測得C點的仰角為45°,從地面B測得仰角為60°,已知AB=20米,點C和直線AB在同一鉛垂平面上,求氣球離地面的高度.(結果精確到0.1米)20.(8分)定義:如果一個三角形中有兩個內角α,β滿足α+2β=90°,那我們稱這個三角形為“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,則∠A=度;(2)如圖1,在Rt△ABC中,∠BAC=90°,AB=3,AC=1.若BD是∠ABC的平分線,①求證:△BDC是“近直角三角形”;②在邊AC上是否存在點E(異于點D),使得△BCE也是“近直角三角形”?若存在,請求出CE的長;若不存在,請說明理由.(3)如圖2,在Rt△ABC中,∠BAC=90°,點D為AC邊上一點,以BD為直徑的圓交BC于點E,連結AE交BD于點F,若△BCD為“近直角三角形”,且AB=5,AF=3,求tan∠C的值.21.(8分)如圖所示,在平面直角坐標系中,拋物線與軸相交于點,點,與軸相交于點,與拋物線的對稱軸相交于點.(1)求該拋物線的表達式,并直接寫出點的坐標;(2)過點作交拋物線于點,求點的坐標;(3)在(2)的條件下,點在射線上,若與相似,求點的坐標.22.(10分)某公司今年1月份的生產成本是400萬元,由于改進技術,生產成本逐月下降,3月份的生產成本是361萬元.假設該公司2、3、4月每個月生產成本的下降率都相同.(1)求每個月生產成本的下降率;(2)請你預測4月份該公司的生產成本.23.(10分)如圖,二次函數y=x2+bx+c的圖象與x軸相交于點A、B兩點,與y軸相交于點C(0,﹣3),拋物線的對稱軸為直線x=1.(1)求此二次函數的解析式;(2)若拋物線的頂點為D,點E在拋物線上,且與點C關于拋物線的對稱軸對稱,直線AE交對稱軸于點F,試判斷四邊形CDEF的形狀,并證明你的結論.24.(10分)如圖,在Rt△ABE中,∠B=90°,以AB為直徑的⊙O交AE于點C,CE的垂直平分線FD交BE于點D,連接CD.(1)判斷CD與⊙O的位置關系,并證明;(2)若AC=6,CE=8,求⊙O的半徑.25.(12分)如圖,AB是⊙O的直徑,AC是⊙O的弦,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E,連接BD.(1)求證:DE是⊙O的切線;(2)若BD=3,AD=4,則DE=.26.已知:AB為⊙O的直徑.(1)作OB的垂直平分線CD,交⊙O于C、D兩點;(2)在(1)的條件下,連接AC、AD,則△ACD為三角形.

參考答案一、選擇題(每題4分,共48分)1、A【分析】根據題意,左視圖有兩列,左視圖所看到的每列小正方形數目分別為3,1.【詳解】因為左視圖有兩列,左視圖所看到的每列小正方形數目分別為3,1故選:A.【點睛】本題考查由三視圖判斷幾何體,簡單組合體的三視圖,解題關鍵是根據俯視圖確定左視圖的列數和各列最高處的正方形個數.2、D【分析】分別利用一次函數、正比例函數、反比例函數、二次函數的增減性分析得出答案.【詳解】A選項函數的圖象是隨著增大而增大,故本選項錯誤;B選項函數的對稱軸為,當時隨增大而減小故本選項錯誤;C選項函數,當或,隨著增大而增大故本選項錯誤;D選項函數的圖象是隨著增大而減小,故本選項正確;故選D.【點睛】本題考查了三種函數的性質,了解它們的性質是解答本題的關鍵,難度不大.3、C【分析】根據已知及相似三角形的判定方法對各個選項進行分析,從而得到最后答案.【詳解】BADCAE,A,B,D都可判定,選項C中不是夾這兩個角的邊,所以不相似.故選C.【點睛】考查相似三角形的判斷方法,掌握相似三角形常用的判定方法是解題的關鍵.4、C【分析】根據二次函數圖像的對稱性,求出對稱軸,即可得到答案.【詳解】解:根據題意,炮彈在第秒與第秒時的高度相等,∴拋物線的對稱軸為:秒,∵第12秒距離對稱軸最近,∴上述時間中,第12秒時炮彈高度最高;故選:C.【點睛】本題考查了二次函數的性質和對稱性,解題的關鍵是掌握二次函數的對稱性進行解題.5、C【分析】連接BE,設⊙O的半徑為r,然后由垂徑定理和勾股定理列方程求出半徑r,最后由勾股定理依次求BE和EC的長即可.【詳解】解:如圖:連接BE設⊙O的半徑為r,則OA=OD=r,OC=r-2∵OD⊥AB,∴∠ACO=90°∴AC=BC=AB=4,在Rt△ACO中,由勾股定理得:r2-42=(r-2)2,解得:r=5∴AE=2r=10,∵AE為⊙O的直徑∴∠ABE=90°由勾股定理得:BE==6在Rt△ECB中,EC=.故答案為C.【點睛】本題主要考查了垂徑定理和勾股定理,根據題意正確作出輔助線、構造出直角三角形并利用勾股定理求解是解答本題的關鍵.6、D【分析】先利用因式分解法解方程得到所以,,再分類討論:當第三邊長為6時,如圖,在中,,,作,則,利用勾股定理計算出,接著計算三角形面積公式;當第三邊長為10時,利用勾股定理的逆定理可判斷此三角形為直角三角形,然后根據三角形面積公式計算三角形面積.【詳解】解:,或,所以,,I.當第三邊長為6時,如圖,在中,,,作,則,,所以該三角形的面積;II.當第三邊長為10時,由于,此三角形為直角三角形,所以該三角形的面積,綜上所述:該三角形的面積為24或.故選:D.【點睛】本題考查的是利用因式分解法解一元二次方程,等腰三角形的性質,勾股定理及其逆定理,解答此題時要注意分類討論,不要漏解.7、B【分析】分k>0和k<0兩種情況,分別判斷反比例函數的圖象所在象限及一次函數y=-kx-1的圖象經過的象限.再對照四個選項即可得出結論.【詳解】當k>0時,-k<0,

∴反比例函數的圖象在第一、三象限,一次函數y=kx-1的圖象經過第一、三、四象限;

當k<0時,-k>0,

∴反比例函數的圖象在第二、四象限,一次函數y=kx-1的圖象經過第二、三、四象限.

故選:B.【點睛】本題考查了反比例函數的圖象與性質以及一次函數圖象與性質,熟練掌握兩種函數的性質并分情況討論是解題的關鍵.8、B【分析】主要考查增長率問題,一般用增長后的量=增長前的量×(1+增長率),如果設利潤的年平均增長率為x,然后根據已知條件可得出方程.【詳解】解:依題意得七月份的利潤為25(1+x)2,

∴25(1+x)2=1.

故選:B.【點睛】本題考查了一元二次方程的應用,找到關鍵描述語,就能找到等量關系,是解決問題的關鍵.同時要注意增長率問題的一般規律.9、D【解析】①當弦AB和CD在圓心同側時,如圖1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12﹣5=7cm;②當弦AB和CD在圓心異側時,如圖2,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm,∴AB與CD之間的距離為7cm或17cm.故選D.點睛:本題考查了勾股定理和垂徑定理的應用.此題難度適中,解題的關鍵是注意掌握數形結合思想與分類討論思想的應用,小心別漏解.10、A【解析】設C′D′與BC交于點E,如圖所示:∵旋轉角為20°,∴∠DAD′=20°,∴∠BAD′=90°?∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°?70°?90°?90°=11°,∴∠1=∠BED′=110°.故選A.11、C【分析】根據二次函數的圖象可知拋物線開口向上,對稱軸為x=-1,且過點(1,0),根據對稱軸可得拋物線與x軸的另一個交點為(-3,0),把(1,0)代入可對①做出判斷;由對稱軸為x=-1,可對②做出判斷;根據二次函數與一元二次方程的關系,可對③做出判斷;根據a、c的符號,以及對稱軸可對④做出判斷;最后綜合得出答案.【詳解】解:由圖象可知:拋物線開口向上,對稱軸為直線x=-1,過(1,0)點,

把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正確;對稱軸為直線x=-1,即:整理得,b=2a,因此②不正確;由拋物線的對稱性,可知拋物線與x軸的兩個交點為(1,0)(-3,0),因此方程ax2+bx+c=0的兩根分別為-3和1;故③是正確的;

由a>0,b>0,c<0,且b=2a,則a-2b+c=a-4a+c=-3a+c<0,因此④不正確;

故選:C.【點睛】本題考查的是二次函數圖象與系數之間的關系,能夠根據開口判斷a的符號,根據與x軸,y軸的交點判斷c的值以及b用a表示出的代數式是解題的關鍵.12、A【分析】先把x=1代入方程得a+2b=-1,然后利用整體代入的方法計算2a+4b的值【詳解】將x=1代入方程x2+ax+2b=0,得a+2b=-1,2a+4b=2(a+2b)=2×(-1)=-2.故選A.【點睛】此題考查一元二次方程的解,整式運算,掌握運算法則是解題關鍵二、填空題(每題4分,共24分)13、5(答案不唯一,只有即可)【解析】由于方程有實數根,則其根的判別式△≥1,由此可以得到關于c的不等式,解不等式就可以求出c的取值范圍.【詳解】解:一元二次方程化為x2+6x+9-c=1,∵△=36-4(9-c)=4c≥1,解上式得c≥1.故答為5(答案不唯一,只有c≥1即可).【點睛】本題考查了一元二次方程ax2+bx+c=1(a≠1)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>1時,一元二次方程有兩個不相等的實數根;當?=1時,一元二次方程有兩個相等的實數根;當?<1時,一元二次方程沒有實數根.關鍵在于求出c的取值范圍.14、3【分析】首先利用t表示出CP和CQ的長,根據四邊形PQBC是平行四邊形時CP=BQ,據此列出方程求解即可.【詳解】解:設運動時間為t秒,如圖,則CP=12-3t,BQ=t,四邊形PQBC為平行四邊形12-3t=t,解得:t=3,故答案為【點睛】本題考查了平行四邊形的判定及動點問題,解題的關鍵是化動為靜,分別表示出CP和BQ的長,難度不大.15、【詳解】設扇形的圓心角為n°,則根據扇形的弧長公式有:,解得所以16、【分析】先求出這個口袋里一共有球的個數,然后用紅球的個數除以球的總個數即可.【詳解】因為共有5個球,其中紅球由3個,所以從中任意摸出一個球是紅球的概率是,故答案為.【點睛】本題考查了概率公式,掌握概率=所求情況數與總情況數之比是解題的關鍵.17、7:1【分析】由平行易得△ABC∽△A′B′C′,且兩三角形位似,位似比等于OA′:OA.【詳解】解:∵A′B′∥AB,B′C′∥BC,

∴△ABC∽△A′B′C′,,,∠A′B′O=∠ABO,∠C′B′O=∠CBO,,∠A′B′C′=∠ABC,

∴△ABC∽△A′B′C′,∴△ABC與△A′B′C′是位似圖形,

位似比=AB:A′B′=OA:OA′=(1+3):1=7:1.【點睛】本題考查了相似圖形交于一點的圖形的位似圖形,位似比等于對應邊的比.18、36【分析】首先證明△AFE∽△CBE,然后利用對應邊成比例,E為OA的中點,求出AE:EC=1:3,即可得出.【詳解】在平行四邊形ABCD中,AD∥BC,

則△AFE∽△CBE,

∴,

∵O為對角線的交點,

∴OA=OC,

又∵E為OA的中點,

∴AE=AC,

則AE:EC=1:3,

∴AF:BC=1:3,

∴即∴=36故答案為:36【點睛】本題考查了相似三角形的判定與性質以及平行四邊形的性質,難度適中,解答本題的關鍵是根據平行證明△DFE∽△BAE,然后根據對應邊成比例求值.三、解答題(共78分)19、47.3米【解析】試題分析:過點C作CD⊥AB,交AB于點D;設AD=x.本題涉及到兩個直角三角形△ADC、△BDC,應利用其公共邊CD構造等量關系,解三角形可得AD、BD與x的關系;借助AB=AD-BD構造方程關系式,進而可求出答案.試題解析:過點C作CD⊥AB,交AB于點D;設CD=x,在Rt△ADC中,有AD==CD=x,在Rt△BDC中,有BD=x,又有AB=AD-BD=20;即x-x=20,解得:x=10(3+)≈47.3(米).答:氣球離地面的高度CD為47.3米.20、(1)20;(2)①見解析;②存在,CE=;(3)tan∠C的值為或.【分析】(1)∠B不可能是α或β,當∠A=α時,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°;(2)①如圖1,設∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,即可求解.(3)①如圖2所示,當∠ABD=∠DBC=β時,設BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=,即可求解;②如圖3所示,當∠ABD=∠C=β時,AF∶EF=AG∶GE=2∶3,則DE=2k,則AG=3k=R(圓的半徑)=BG,點H是BE的中點,則GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=1k,由勾股定理得:25=8k2+16k2,解得:k=,即可求解.【詳解】解:(1)∠B不可能是α或β,當∠A=α時,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°,故答案為20;(2)①如圖1,設∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②存在,理由:在邊AC上是否存在點E(異于點D),使得△BCE是“近直角三角形”,AB=3,AC=1,則BC=5,則∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,則CE=1﹣=;(3)①如圖2所示,當∠ABD=∠DBC=β時,則AE⊥BF,則AF=FE=3,則AE=6,AB=BE=5,過點A作AH⊥BC于點H,設BH=x,則HE=5﹣x,則AH2=AE2﹣HE2=AB2﹣HB2,即52﹣x2=62﹣(5﹣x)2,解得:x=;cos∠ABE===cos2β,則tan2β=,則tanα=;②如圖3所示,當∠ABD=∠C=β時,過點A作AH⊥BE交BE于點H,交BD于點G,則點G是圓的圓心(BE的中垂線與直徑的交點),∵∠AEB=∠DAE+∠C=α+β=∠ABC,故AE=AB=5,則EF=AE﹣AF=5﹣3=2,∵DE⊥BC,AH⊥BC,∴ED∥AH,則AF∶EF=AG∶GE=2∶3,則DE=2k,則AG=3k=R(圓的半徑)=BG,點H是BE的中點,則GH=DE=k,在△BGH中,BH==2k,在△ABH中,AB=5,BH=2k,AH=AG+HG=1k,由勾股定理得:25=8k2+16k2,解得:k=;在△ABD中,AB=5,BD=6k=,則cos∠ABD=cosβ===cosC,則tanC=;綜上,tan∠C的值為或.【點睛】本題主要考查了平行四邊形的性質,全等三角形的判定與性質,三角函數值等知識.屬于圓的綜合題,解決本題需要我們熟練各部分的內容,對學生的綜合能力要求較高,一定要注意將所學知識貫穿起來.21、(1),點;(2)點;(3)或【解析】(1)設拋物線的表達式為,將A、B、C三點坐標代入表達式,解出a、b、c的值即可得到拋物線表達式,同理采用待定系數法求出直線BC解析式,即可求出與對稱軸的交點坐標;(2)過點E作EH⊥AB,垂足為H.先證∠EAH=∠ACO,則tan∠EAH=tan∠ACO=,設EH=t,則AH=2t,從而可得到E(-2+2t,t),最后,將點E的坐標代入拋物線的解析式求解即可;(3)先證明,再根據與相似分兩種情況討論,建立方程求出AF,利用三角函數即可求出F點的坐標.【詳解】(1)設拋物線的表達式為.把,和代入得,解得,拋物線的表達式,∴拋物線對稱軸為設直線BC解析式為,把和代入得,解得∴直線BC解析式為當時,點.(2)如圖,過點E作EH⊥AB,垂足為H.∵∠EAB+∠BAC=90°,∠BAC+∠ACO=90°,∴∠EAH=∠ACO.∴tan∠EAH=tan∠ACO=.設EH=t,則AH=2t,∴點E的坐標為(?2+2t,t).將(?2+2t,t)代入拋物線的解析式得:12(?2+2t)2?(?2+2t)?4=t,解得:t=或t=0(舍去)∴(3)如圖所示,,.,,.由(2)中tan∠EAH=tan∠ACO可知,.和相似,分兩種情況討論:①,即,,∵tan∠EAB=∴sin∠EAB=∴F點的縱坐標=點.②,即,,同①可得F點縱坐標=橫坐標=點.綜合①②,點或.【點睛】本題考查二次函數的綜合問題,需要熟練掌握待定系數法求函數解析式,熟練運用三角函數與相似三角形的性質,作出圖形,數形結合是解題的關鍵.22、(1)每個月生產成本的下降率為5%;(2)預測4月份該公司的生產成本為342.95萬元.【分析】(1)設每個月生產成本的下降率為x,根據2月份、3月份的生產成本,即可得出關于x的一元二次方程,解之取其較小值即可得出結論;(2)由4月份該公司的生產成本=3月份該公司的生產成本×(1﹣下降率),即可得出結論.【詳解】(1)設每個月生產成本的下降率為x,根據題意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合題意,舍去).答:每個月生產成本的下降率為5%;(2)361×(1﹣5%)=342.95(萬元),答:預測4月份該公司的生產成本為342.95萬元.【點睛】本題考查了一元二次方程的應用,解題的關鍵是:(1)找準等量關系,正確列出一元二次方程;(2)根據數量關系,列式計算.23、(1)y=x2﹣2x﹣3;(2)四邊形EFCD是正方形,見解析【分析】(1)拋物線與y軸相交于點C(0,﹣3),對稱軸為直線x=1知c=﹣3,,據此可得答案;(2)結論四邊形EFCD是正方形.如圖1中,連接CE與DF交于點K.求出E、F、D、C四點坐標,只要證明DF⊥CE,DF=CE,KC=KE,KF=KD即可證明.【詳解】(1)∵拋物線與y軸相交于點C(0,﹣3),對稱軸為直線x=1∴c=﹣3,,即b=﹣2,∴二次函數解析式為;(2)四邊形EFCD是正方形.理由如下:如圖,連接CE與DF交于點K.∵,∴頂點D(1,4),∵C、E關于對稱軸對稱,C(0,﹣3),∴E(2,﹣3),∵A(﹣1,0),設直線AE的解析式為,則,解得:,∴直線AE的解析式為y=﹣x﹣1.∴F(1,﹣2),∴CK=EK=1,FK=DK=1,∴四邊形EFCD是平行四邊形,又∵CE⊥DF,CE=DF,∴四邊形EFCD是正方形.【點睛】本題是二次函數綜合題,主要考查了待定系數法、一次函數的應用、正方形的判定和性質等知識,解題的關鍵是靈活運用待定系數法確定函數解析式.24、(1)CD與⊙O相切,證明見解析;(2).【分析】(1)連接OC,由于FD是CE的垂直平分線,所以∠E=∠DCE,又因為∠A=∠OCA,∠A+∠E=90°,所以∠O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論