保山市重點中學高三第二次診斷性檢測新高考數學試卷及答案解析_第1頁
保山市重點中學高三第二次診斷性檢測新高考數學試卷及答案解析_第2頁
保山市重點中學高三第二次診斷性檢測新高考數學試卷及答案解析_第3頁
保山市重點中學高三第二次診斷性檢測新高考數學試卷及答案解析_第4頁
保山市重點中學高三第二次診斷性檢測新高考數學試卷及答案解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

保山市重點中學高三第二次診斷性檢測新高考數學試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.2.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數為()A.1 B.2 C.3 D.03.A. B. C. D.4.已知命題:是“直線和直線互相垂直”的充要條件;命題:函數的最小值為4.給出下列命題:①;②;③;④,其中真命題的個數為()A.1 B.2 C.3 D.45.已知函數滿足當時,,且當時,;當時,且).若函數的圖象上關于原點對稱的點恰好有3對,則的取值范圍是()A. B. C. D.6.已知函數,若恒成立,則滿足條件的的個數為()A.0 B.1 C.2 D.37.已知正方體的棱長為1,平面與此正方體相交.對于實數,如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結論中,一定正確的是A. B.C. D.8.函數的部分圖象大致為()A. B.C. D.9.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標為,則此雙曲線的方程是A. B.C. D.10.的內角的對邊分別為,已知,則角的大小為()A. B. C. D.11.把滿足條件(1),,(2),,使得的函數稱為“D函數”,下列函數是“D函數”的個數為()①②③④⑤A.1個 B.2個 C.3個 D.4個12.已知是兩條不重合的直線,是兩個不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則二、填空題:本題共4小題,每小題5分,共20分。13.在的二項展開式中,所有項的二項式系數之和為256,則_______,項的系數等于________.14.已知為拋物線:的焦點,過作兩條互相垂直的直線,,直線與交于、兩點,直線與交于、兩點,則的最小值為__________.15.如圖梯形為直角梯形,,圖中陰影部分為曲線與直線圍成的平面圖形,向直角梯形內投入一質點,質點落入陰影部分的概率是_____________16.已知等差數列的前n項和為Sn,若,則____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,它的導函數為.(1)當時,求的零點;(2)當時,證明:.18.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點.(1)證明:;(2)求直線與平面所成角的正弦值.19.(12分)已知函數,.(1)討論的單調性;(2)當時,證明:.20.(12分)已知函數.(1)若,解關于的不等式;(2)若當時,恒成立,求實數的取值范圍.21.(12分)已知函數.(1)若關于的不等式的整數解有且僅有一個值,當時,求不等式的解集;(2)已知,若,使得成立,求實數的取值范圍.22.(10分)已知拋物線與直線.(1)求拋物線C上的點到直線l距離的最小值;(2)設點是直線l上的動點,是定點,過點P作拋物線C的兩條切線,切點為A,B,求證A,Q,B共線;并在時求點P坐標.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據三視圖作出幾何體的直觀圖,結合三視圖的數據可求得幾何體的體積.【詳解】根據三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點睛】本題考查利用三視圖計算幾何體的體積,考查空間想象能力與計算能力,屬于基礎題.2、C【解析】

由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數.【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個數為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎題.3、A【解析】

直接利用復數代數形式的乘除運算化簡得答案.【詳解】本題正確選項:【點睛】本題考查復數代數形式的乘除運算,是基礎的計算題.4、A【解析】

先由兩直線垂直的條件判斷出命題p的真假,由基本不等式判斷命題q的真假,從而得出p,q的非命題的真假,繼而判斷復合命題的真假,可得出選項.【詳解】已知對于命題,由得,所以命題為假命題;關于命題,函數,當時,,當即時,取等號,當時,函數沒有最小值,所以命題為假命題.所以和是真命題,所以為假命題,為假命題,為假命題,為真命題,所以真命題的個數為1個.故選:A.【點睛】本題考查直線的垂直的判定和基本不等式的應用,以及復合命題的真假的判斷,注意運用基本不等式時,滿足所需的條件,屬于基礎題.5、C【解析】

先作出函數在上的部分圖象,再作出關于原點對稱的圖象,分類利用圖像列出有3個交點時滿足的條件,解之即可.【詳解】先作出函數在上的部分圖象,再作出關于原點對稱的圖象,如圖所示,當時,對稱后的圖象不可能與在的圖象有3個交點;當時,要使函數關于原點對稱后的圖象與所作的圖象有3個交點,則,解得.故選:C.【點睛】本題考查利用函數圖象解決函數的交點個數問題,考查學生數形結合的思想、轉化與化歸的思想,是一道中檔題.6、C【解析】

由不等式恒成立問題分類討論:①當,②當,③當,考查方程的解的個數,綜合①②③得解.【詳解】①當時,,滿足題意,②當時,,,,,故不恒成立,③當時,設,,令,得,,得,下面考查方程的解的個數,設(a),則(a)由導數的應用可得:(a)在為減函數,在,為增函數,則(a),即有一解,又,均為增函數,所以存在1個使得成立,綜合①②③得:滿足條件的的個數是2個,故選:.【點睛】本題考查了不等式恒成立問題及利用導數研究函數的解得個數,重點考查了分類討論的數學思想方法,屬難度較大的題型.7、B【解析】

此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關系,考查空間想象能力,考查了學生靈活應用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.8、B【解析】

圖像分析采用排除法,利用奇偶性判斷函數為奇函數,再利用特值確定函數的正負情況。【詳解】,故奇函數,四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B。【點睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。9、D【解析】

根據點差法得,再根據焦點坐標得,解方程組得,,即得結果.【詳解】設雙曲線的方程為,由題意可得,設,,則的中點為,由且,得,,即,聯立,解得,,故所求雙曲線的方程為.故選D.【點睛】本題主要考查利用點差法求雙曲線標準方程,考查基本求解能力,屬于中檔題.10、A【解析】

先利用正弦定理將邊統一化為角,然后利用三角函數公式化簡,可求出解B.【詳解】由正弦定理可得,即,即有,因為,則,而,所以.故選:A【點睛】此題考查了正弦定理和三角函數的恒等變形,屬于基礎題.11、B【解析】

滿足(1)(2)的函數是偶函數且值域關于原點對稱,分別對所給函數進行驗證.【詳解】滿足(1)(2)的函數是偶函數且值域關于原點對稱,①不滿足(2);②不滿足(1);③不滿足(2);④⑤均滿足(1)(2).故選:B.【點睛】本題考查新定義函數的問題,涉及到函數的性質,考查學生邏輯推理與分析能力,是一道容易題.12、B【解析】

根據空間中線線、線面位置關系,逐項判斷即可得出結果.【詳解】A選項,若,,,,則或與相交;故A錯;B選項,若,,則,又,是兩個不重合的平面,則,故B正確;C選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故C錯;D選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故D錯;故選B【點睛】本題主要考查與線面、線線相關的命題,熟記線線、線面位置關系,即可求解,屬于常考題型.二、填空題:本題共4小題,每小題5分,共20分。13、81【解析】

根據二項式系數和的性質可得n,再利用展開式的通項公式求含項的系數即可.【詳解】由于所有項的二項式系數之和為,,故的二項展開式的通項公式為,令,求得,可得含x項的系數等于,故答案為:8;1.【點睛】本題主要考查二項式定理的應用,二項式系數的性質,二項式展開式的通項公式,屬于中檔題.14、16.【解析】由題意可知拋物線的焦點,準線為設直線的解析式為∵直線互相垂直∴的斜率為與拋物線的方程聯立,消去得設點由跟與系數的關系得,同理∵根據拋物線的性質,拋物線上的點到焦點的距離等于到準線的距離∴,同理∴,當且僅當時取等號.故答案為16點睛:(1)與拋物線有關的最值問題,一般情況下都與拋物線的定義有關.利用定義可將拋物線上的點到焦點的距離轉化為到準線的距離,可以使運算化繁為簡.“看到準線想焦點,看到焦點想準線”,這是解決拋物線焦點弦有關問題的重要途徑;(2)圓錐曲線中的最值問題,可利用基本不等式求解,但要注意不等式成立的條件.15、【解析】

聯立直線與拋物線方程求出交點坐標,再利用定積分求出陰影部分的面積,利用梯形的面積公式求出,最后根據幾何概型的概率公式計算可得;【詳解】解:聯立解得或,即,,,,,故答案為:【點睛】本題考查幾何概型的概率公式的應用以及利用微積分基本定理求曲邊形的面積,屬于中檔題.16、【解析】

由,,成等差數列,代入可得的值.【詳解】解:由等差數列的性質可得:,,成等差數列,可得:,代入,可得:,故答案為:.【點睛】本題主要考查等差數列前n項和的性質,相對不難.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)證明見解析.【解析】

當時,求函數的導數,判斷導函數的單調性,計算即為導函數的零點;

當時,分類討論x的范圍,可令新函數,計算新函數的最值可證明.【詳解】(1)的定義域為當時,,,易知為上的增函數,又,所以是的唯一零點;(2)證明:當時,,①若,則,所以成立,②若,設,則,令,則,因為,所以,從而在上單調遞增,所以,即,在上單調遞增;所以,即,故.【點睛】本題主要考查導數法研究函數的單調性,單調性,零點的求法.注意分類討論和構造新函數求函數的最值的應用.18、(1)見證明;(2)【解析】

(1)設是的中點,連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標原點,的方向為軸的正方向,建空間直角坐標系,分別計算各個點坐標,計算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設是的中點,連接、,是的中點,,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過點作,垂足為,平面,以為坐標原點,的方向為軸的正方向,建立如圖的空間直角坐標系,則,,,,設是平面的一個法向量,則,,令,則,,,直線與平面所成角的正弦值為.【點睛】本題考查了線面垂直,線線垂直,利用空間直角坐標系解決線面夾角問題,意在考查學生的空間想象能力和計算能力.19、(1)見解析;(2)見解析【解析】

(1)求導得,分類討論和,利用導數研究含參數的函數單調性;(2)根據(1)中求得的的單調性,得出在處取得最大值為,構造函數,利用導數,推出,即可證明不等式.【詳解】解:(1)由于,得,當時,,此時在上遞增;當時,由,解得,若,則,若,,此時在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設,則,令,則,則在單調遞減,∴,即,則在單調遞減∴,∴,∴.【點睛】本題考查利用導數研究函數的單調性和最值,涉及分類討論和構造新函數,通過導數證明不等式,考查轉化思想和計算能力.20、(1)(2)【解析】

(1)利用零點分段法將表示為分段函數的形式,由此求得不等式的解集.(2)對分成三種情況,求得的最小值,由此求得的取值范圍.【詳解】(1)當時,,由此可知,的解集為(2)當時,的最小值為和中的最小值,其中,.所以恒成立.當時,,且,不恒成立,不符合題意.當時,,若,則,故不恒成立,不符合題意;若,則,故不恒成立,不符合題意.綜上,.【點睛】本小題主要考查絕對值不等式的解法,考查根據絕對值不等式恒成立求參數的取值范圍,考查分類討論的數學思想方法,屬于中檔題.21、(1)(2)【解析】

(1)求解不等式,結合整數解有且僅有一個值,可得,分類討論,求解不等式,即得解;(2)轉化,使得成立為,利用不等式性質,求解二次函數最小值,代入解不等式即可.【詳解】(1)不等式,即,所以,由,解得.因為,所以,當時,,不等式等價于或或即或或,故,故不等式的解集為.(2)因為,由,可得,又由,使得成立,則,解得或.故實數的取值范圍為.【點睛】本題考查了絕對值不等式的求解和恒成立問題,考查了學生轉化劃歸,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論