金屬開采能否與計劃中的電動汽車轉型速度相匹配?-2023-12-新能源_第1頁
金屬開采能否與計劃中的電動汽車轉型速度相匹配?-2023-12-新能源_第2頁
金屬開采能否與計劃中的電動汽車轉型速度相匹配?-2023-12-新能源_第3頁
金屬開采能否與計劃中的電動汽車轉型速度相匹配?-2023-12-新能源_第4頁
金屬開采能否與計劃中的電動汽車轉型速度相匹配?-2023-12-新能源_第5頁
已閱讀5頁,還剩24頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

FAILURETOCHARGE

ACriticalLookatCanada’sEVPolicy

ExecutiveSummary

Canada’sgovernmenthasestablishedpoliciesdesignedtopush

automakerstoachievethegovernment’sgoalofhaving35percent

ofallnewmedium-andheavy-dutyvehiclesalesbeelectricby2030,

risingto100percentofallnewmedium-andheavy-dutyvehicle

salesbeingelectricby2040.

RockwoodLithiumMineinSilverCity,Nevada,USA

2

KennethP.Green

by2030,alongwith60newnickelmines,and17newcobaltmines.The

materialsneededforcathodeproductionwillrequire50morenew

mines,andanodematerialsanother40.Thebatterycellswillrequire

90newmines,andEVsthemselvesanother81.Intotal,thisaddsupto

388newmines.Forcontext,asof2021,therewereonly270metalmines

operatingacrosstheUS,andonly70inCanada.IfCanadaandtheUS

wishtohaveinternalsupplychainsforthesevitalEVmetals,theyhave

alotofminestoestablishinaveryshortperiod.

Historically,however,miningandre?n-

ingfacilitiesarebothslowtodevelop

Miningandre?ningfacilities

arebothslowtodevelopand

arehighlyuncertainendeavors

plaguedbyregulatoryuncer-

taintyandbyenvironmental

andregulatorybarriers.”

andarehighlyuncertainendeavors

plaguedbyregulatoryuncertainty

andbyenvironmentalandregulatory

barriers.Lithiumproductiontime-

lines,forexample,areapproximately

6to9years,whileproductiontime-

lines(fromapplicationtoproduction)

fornickelareapproximately13to18

years,accordingtotheIEA.

Theestablishmentofaggressiveandshort-termEVadoptiongoals

setsupapotentialcon?ictwithmetalandmineralproduction,which

ishistoricallycharacterizedbylonglead-timesandlongproduction

timelines.Theriskthatmineralandminingproductionwillfallshortof

projecteddemandissigni?cant,andcouldgreatlyaffectthesuccessof

variousgovernments’plansforEVtransition.

POLICYBACKGROUND

Concernedabouttheprospectsofsevereman-madeclimatechange,

governmentsaroundtheworldhaveinstitutedprogramstophaseout

theuseoffossilfuel-powered,internalcombustion-driventranspor-

tationsystems—beginningprimarilywithcarsandlighttrucks—and

replacethemwithBattery-ElectricVehicles(BEV);orvehiclesmostly

poweredbyelectricitybutwhichalsofeatureinternalcombustion

backuppower,calledPlug-inHybridElectricVehicles(PHEVs).

InDecember2022,theCanadiangovernmentintroducedregulations

thatwouldleadtothephasingoutofsalesofnewfossil-fuelpowered,

internalcombustionvehicles,tobereplacedbysalesofvehiclesdesig-

natedas“ZeroEmissionVehicles,”orZEVinlegislation.Canada’sAction

1

Planwill“setannuallyincreasingrequirementstowardsachieving100

percentnewlight-dutyzero-emissionvehiclesalesby2035,including

mandatoryinterimtargetsofatleast20percentofallnewlight-duty

vehiclesofferedforsaleby2026andatleast60percentby2030”

(Canada,2022).

Further,toreduceemissionsfrommedium-andheavy-dutyvehicles:

TheGovernmentofCanadawillaimtoreach35percentoftotal

newmedium-andheavy-dutyvehiclesalesbeingzero-emis-

sionvehiclesby2030.Inaddition,theGovernmentwilldevelop

amedium-andheavy-dutyzero-emissionvehicleregulationto

require100percentofnewmedium-andheavy-dutyvehiclesales

tobezero-emissionvehiclesby2040forasubsetofvehicletypes

basedonfeasibility,withinterim2030regulatedsalesrequire-

mentsthatwouldvaryfordifferentvehiclecategoriesbasedon

feasibility,andexploreinterimtargetsforthemid-2020s.(Govern-

mentofCanada,2022)

Accordingtothecost-bene?tanalysispublishedintheCanadaGazette

describingCanada’snewZEVtransitionplan:

1

ThiscategorizationschemeincludesBEVsonly,notPHEVs.

3

4

KennethP.Green

From2026to2050,theproposedAmendmentsareestimatedto

haveincrementalZEVvehicleandhomechargercostsof$24.5bil-

lion,whilesaving$33.9billioninnetenergycosts.Theseimpacts

accruetothosewhoswitchtoZEVsinresponsetotheproposed

Amendments.ThecumulativeGHGemissionreductionsareesti-

matedtobe430megatons(Mt),valuedat$19.2billioninavoided

globaldamages.TheproposedAmendmentsarethusestimatedto

havenetbene?tsof$28.6billionandwouldhelpCanadameetits

GHGemissionsreductiontargetsof40percentbelow2005levels

by2030andnet-zeroemissionsby2050.(CanadaGazette,2022)

AsCanadaandtheUnitedStatesshareanintegratedautomobilemar-

ket,itisalsoworthnotingthattheUShasplansforatransitionto

electricvehicles,thoughthestrategiesof

thetwocountriesdifferconsiderably.US

andCanadianplansforvehicleelectri?ca-

tionaredifferentinformsandfunctions,

timelines,andtargets.The?rstdistinction

isthattheUSincludesplug-inhybridelec-

tricvehiclesintoits“ZEV”category,along

withfuelcellelectricvehicles,whichare

currentlynichevehiclessoldprimarilyin

California,ratherthanmainstreampro-

ductionvehicles(Voelcker,2022).

IntheUnitedStates,theBidenAdministrationpublishedExecutive

Order14037in2021whichcontainedthestatedgoal“that50percent

ofallnewpassengercarsandlighttruckssoldin2030bezero-emission

vehicles,includingbatteryelectric,plug-inhybridelectric,orfuelcell

electricvehicles”(UnitedStatesFederalRegister,2021).Theinclusion

ofplug-inhybridvehicles(generallynotconsideredtobezero-emis-

sionvehicles)isasigni?cantdistinctionbetweentheUSandCanadian

electricvehicleplans.

PresidentBidenalsoissuedanotherexecutiveorderin2021thatwould

requirethefederalgovernmenttostopacquiringgasoline-powered

carsinitsownvehicle?eets.ExecutiveOrder14057requires“100

CanMetalMiningMatchtheSpeedofthePlannedElectricVehicleTransition?

5

percentzero-emissionvehicleacquisitionsby2035,including100

percentzero-emissionlight-dutyvehicleacquisitionsby2027”(United

StatesFederalRegister,2021b).

Internationally,vehicleelectri?cationgoalsaredifferentstill.TheInter-

nationalEnergyAgency(IEA)initsGlobalEVOutlook2021characterizes

thecollectiveEVtargetof“allexistingpolicies,policyambitionsand

targetsthathavebeenlegislatedfororannouncedbygovernments

aroundtheworld.ItincludescurrentEV-relatedpoliciesandregula-

tions,aswellastheexpectedeffectsofannounceddeploymentsand

plansfromindustrystakeholders.STEPS[the“StatedPolicyScenario”

oftheIEA]aimstoholdupamirrortotheplansofpolicymakersand

illustratetheirconsequences”(IEA2021a:73).

Inthisscenario,theIEA?ndsthat“thecollectivetargetoftheEV30@30

signatories[acoalitionofcitygovernmentsandEVindustrygroups]to

achieve30percentsalessharein2030forlight-dutyvehicles,buses

andtrucksissurpassedatthegloballevel(reachingalmost35%),which

re?ectsincreasingambitionsforwidespreadEVdeployment”(IEA

2021a:73).

Itisself-evidentthatincreasingproductionofelectricvehicleswill

requireacorrespondingincreaseintheconstituentmaterialsfrom

whichtheyaremanufactured.Inthecaseofelectricvehiclespowered

bylargebatteries,onemustassumethatincreasingtheproductionof

electricvehicleswillrequireamassiveincreaseintheproductionof

metalsusedinbatteryandEVmanufacturing,suchaslithium,nickel,

cobalt,copper,manganese,graphite,andotherelementssometimes

designatedasrareearthelements(REEs),orenergycriticalelements.

Canadahasbeguntorampupitsproductionre?ningcapacityforlith-

iumandotherrareearthelementsrequiredfortheelectricvehicletran-

sition.Forexample,theCanadiangovernmentrecentlyshowcasedlith-

iumproductioninCanada.InJamesBay,Quebec,thegovernmenthas

approvedtheJamesBayLithiumMineProject,aproposaltomine5,800

tonnesoflithium-bearingoreperdayintheEastmanCreecommunity

(D’Andrea,2023).InSaskatchewan,thegovernmenthasapprovedaplan

6

KennethP.Green

toproduceandre?nelithiumataplantinthesouthernpartofthe

province.Accordingtothegovernment,“Stageoneoftheprojectwill

produce[fromSaskatchewanoil?eldbrines]1to1.75kilograms(kg)of

lithiumhydroxideperday.Stagetwowillincludetheconstructionof

oneofCanada’s?rstlithiumextractionandre?ningfacilities,which

willproduceapproximatelyonetonneoflithiumhydroxideperday,

resultingin365tonnesperyear.Thiswillserveasademonstrationplant

priortofullcommercialization”(Saskatchewan,2020).

RareearthelementsproductionisalsounderwayintheNWTwiththe

processingandre?ningoftworareearthelementscriticaltothepro-

ductionofpowerfulmagnetsusedinelectricvehiclemotorstotake

placeinSaskatchewan(FrewandPonticelli,2023).TheNechalacho

mine“hostsaworld-classresource”ofrareearthores,relativelyrich

inneodymiumandpraseodymium,metalsusedintheproduction

ofhigh-strengthmagnetsusedinelectricmotorsandbatteryalloys

(VitalMetals,2020).Mostrecently(asoftimeofwriting),theCanadian

governmentannouncedthatitwillpayCAN$13billioninsubsidiesto

VolkswagentoestablishabatterymanufacturingfacilityinOntario

(Scherer,2023).ThispledgewasmatchedwithaCAN$15billionsub-

sidytoStellantisforasecondbatterymanufacturingfacilityinOntario

(Shakil,2023).

TheInternationalEnergyAgencywouldliketoseeCanadamovestill

morequicklyinitsdevelopmentofrareearthminingandre?ning

capacity.AtaCanadiangovernment-organizedpaneldiscussioninFeb-

ruary2023,FatihBirol,theheadoftheIEA,“warnedthattheenergy

shortagescurrentlygrippingEuropecouldberepeatedastheworld

transitionstocleanerfuels,ifWesterncountriesdonotincreasethe

availabilityofrareearthmineralsanddevelopfriendliersourcesof

them.”Further,accordingtoanarticleintheGlobeandMailcovering

theevent,Mr.BirolsaidhewouldliketoseecountrieslikeCanadamore

involvedontheinternationalstagebecause“thereisruleoflaw,there

istransparency,andthereisalsoaccountabilityofthegovernment…

Thesoonerthathappens,thebetter,hesaid”(WalshandGraney,2023).

WHATDOGLOBALVEHICLEELECTRIFICATIONGOALS

LOOKLIKE,NUMERICALLY?

Figure1,fromTheRoleofCriticalMineralsinCleanEnergyTransition,

showsexpectedEVmarketpenetrationto2030underIEA’sSustainable

DevelopmentScenario,orSDS.TheSDSre?ectswhattheIEAbelieves

wouldberequiredtosatisfyinternationalagreementsundertheParis

ClimateAccords(IEA,2021b).

2

Asisreadilyapparentfromthegraph,bothelectricvehiclesalesand

batterystoragecapacitygrowthareexpectedtobeseveralordersof

magnitudegreaterthanproductionin2020.Electriccarsales(inthe

leftpanel),areexpectedtorisefromapproximately3millionin2020,

Figure1:TheAdoptionofEVsandBatteryStorageisSettoAccelerate

RapidlyovertheComingDecades

AnnualelectriccarsalesandbatterystoragecapacityintheSDS

Batterystoragecapacityadditions

80

70

60

50

40

30

20

10

120

100

80

Japan

EuropeanUnion

UnitedStates

India

40

China

20

STEPS(World)

2020

2030

2040

2020

2030

2040

IEA.Allrightsreserved.

Note:Electriccarsincludebatteryelectricandplug-inhybridelectricpassengerlight-dutyvehicles,butexclude2/3-wheelers.

Source:IEA(2020c).

Source:IEA,2021b:84.

2

TheInternationalEnergyAgencypublishesagreatdealofdataregardingelectricvehicle

production,composition,manufacturing,andproductionofrawmaterials.AstheIEAis

consideredanauthoritative,quasi-independentsourceofinformationontheseissues,

wewillrelyheavilyontheirlatestpublicationsinthisstudy.

Atthesametime,theauthormakesnoclaimsregardingtheplausibilityofIEA’smathe-

maticalmodelingusedtogeneratesomeoftheseestimates.However,asitisassumed

thatIEA’sdatawillsigni?cantlyinfusegovernmentpolicydevelopment,thesemodeled

estimatesareworthyofattention.Aswithmostmathematicalmodelingexercises,which

frequentlyrely(ofnecessity)onanarrayofsubjectiveassumptions,theauthoradvises

cautioninassumingthesemodelsarereliablere?ectionsofreality.

7

8

KennethP.Green

Figure2:EVandBatteryStorageDeploymentGrowththrough2040

EVandbatterystoragedeploymentgrowsrapidlyoverthenexttwodecades,

withlight-dutyEVsaccountingforaround80%ofthetotal

Globalbatterycapacityadditions

Heavy-dutyPHEV

Heavy-dutyBEV

Light-dutyPHEV

Light-dutyBEV

????

????

????

????

????

STEPS

SDS

IEAAllrightsreserved

Source:IEA,2021b:87.

Note:STEPS=StatedPolicyScenariosofworldgovernmentspursuanttoParisclimateaccord.

SDS=SustainableDevelopmentScenariosoftheInternationalEnergyAgency.

to40millioninonly10years:amorethan10-foldincrease,andtothen

nearlydoubleinthedecadebetween2030and2040.

ReadersshouldnotethatthisIEAmodelincludes“plug-inhybrid”elec-

tricvehicleswhich,aspreviouslymentioned,arenottreateduniformly

invariousnationalandinternationalplansregardingvehicleelectri?-

cationtargetsandtimelinesdiscussedabove.

Correspondingly,IEAestimatesthatbatteryproductionwillalso

increasesigni?cantlyincomingyearsasisdisplayedin?gure2.

Aswith?gure1,onewillnotethatthe“ramp”ofincreasedbattery

powerproductionisverysteep.AstheIEAstates,“IntheSDS[Sustain-

ableDevelopmentScenarios],globalinstallationofutility-scalebat-

terystorageissetfora25-foldincreasebetween2020and2040,with

annualdeploymentreaching105GWby2040.Thelargestmarketsfor

batterydeploymentin2040areIndia,theUnitedStatesandChina”

(IEA,2021b:86).

Theincreasedproductionofbatterieswillinevitablyleadtoincreased

demandforthemetalsusedintheirfabrication.Hence,theIEAalso

projectssignificantgrowthindemandforEVbatterymetalsand

minerals.

HOWWILLGLOBALVEHICLEELECTRIFICATION

INFLUENCEMINERALANDMETALPRODUCTION

REQUIREMENTS?

AccordingtotheInternationalEnergyAgency,electricvehiclesuse

aboutsixtimesmoreraremetalsthandointernalcombustionvehi-

cles.Figure3breaksthisoutgraphicallybythevariousmetalsrequired

forEVproduction.Thedatain?gure3showthekeymetalsusedin

thevehicleelectri?cationequation.Copper,lithium,nickel,cobalt,and

graphitestandoutsharplyascomponentsofelectricvehiclesthatwill

beneededinquantitiesfarhigherthanisthecaseforconventional

internalcombustionvehicles.

Figure4putsthisinformationintocontextwithrespecttoIEA’spro-

jectedgrowthinmineraldemandforEVsthrough2040.Readerswill

notethatthechartofexpecteddemandessentiallyshowsexponential

growth.Lookingattheright-handpanelofthechart,onenotesthattwo

metals—lithiumandnickel(criticalbatteryelements)areexpectedto

Source:IEA2021d.

9

10KennethP.Green

Figure4:ProjectedGrowthinMineralDemandforEVs,2020through2040.

MineraldemandforEVSintheSDSgrowsbynearly30timesbetween2020and2040,

withdemandforlithiumandnickelgrowingbyaround40times

??

??

??

??

??

??

??

??

?

STEPS

Nickel

Cobalt

Manganese

Copper

Graphite

Silicon

REEs

IEA?Allrightsreserved?

NoteSiliconisexcludedfromthedemandgrowthgraphduetoitsveryhighgrowthover-foldincreasestartingfromalowbase?

Source:IEA,2021b:98.

Note:STEPS=StatedPolicyScenariosofworldgovernmentspursuanttoParisclimateaccord.

SDS=SustainableDevelopmentScenariosoftheInternationalEnergyAgency.

Figure5:DistributionoftheProductionofSelectedMineralsbyGovernance

andEmissionsPerformance,2019

Distributionofproductionofselectedmaterialsbygovernanceandemissionsperformance,2019

100%

Lowgovernancescoreand

highemissionsintensity

80%

Lowgovernancescoreand

lowemissionsintensity

60%

Highgovernancescoreand

highemissionsintensity

40%

20%

Highgovernancescoreand

lowemissionsintensity

Copper

Lithium

Nickel

Cobalt

IEA.Allrightsreserved.

Source:IEA,2021b:126.

CanMetalMiningMatchtheSpeedofthePlannedElectricVehicleTransition?11

seethegreatestgrowthindemand,followedbycopper(akeycompo-

nentofelectronicsystems),andgraphite,alsoacriticalcomponentin

theproductionofbatteries.Addeddemandforsteel-makingmetals

(manganeseandcobalt),whilelarge,islowerthanthatrelatedtoEV

batteryproduction.

Figure5showswheretheInternationalEnergyAgencyexpectsthemet-

alsandmineralsneededfortheelectricvehicletransitiontocomefrom,

andcharacterizesthequalityofgovernanceintheminingregionsthat

currentlyproduceneededEVmetals.

Figure6suggests,further,thattheIEAdoesnotexpecttheproduction

localesofthesecriticalmetalstochangeverymuchinthenearfuture.

HowwillallofthisplayoutwithregardtotheminingofEVbattery

metalsandminerals?InitsGlobalElectricVehicleOutlook2022,theIEA

againoffersestimates.AsFigure7shows,bothofIEA’sfuturescenarios

requireamassiveincreaseinthenumberofminesneededtoprovide

materialsforeveryaspectoftheEVtransition.Fiftynewlithiummines

areneededby2030,inthe“AnnouncedPledgesscenario”(avariation

Figure6:ExpectedChangeinDistributionofCountriesProducing

EVMinerals,2019to2025

Geographicconcentration:Analysisofprojectpipelinesindicatesthat,inmostcases,the

geographicalconcentrationofproductionisunlikelytochangeinthenearterm

???

???

???

??

2015

2025

2025

2015

2025

2015

2025

2025

Copper

Nickel

Cobalt

Source:IEA,2021b:121.

12KennethP.Green

ontheSTEPSscenariobasedonestablishedgovernmentpledges)along

with60morenickelmines,and17morecobaltmines.Thematerials

neededforcathodeproductionwillrequire50moremines,andanode

materialsanother40.Thebatterycellswillrequire90moremines,and

EVsthemselvesanother81(IEA,2022:175).Intotal,thisis388new

mines.Forcontext,asof2021,therewereonly270metalminesoper-

atingacrosstheUS,andonly70inCanada.

Figure7:NumberofMinesRequiredtoProduceNeededMineralsfortheGrowthofElectricVehicles

Numberofminestoproducerequiredlevelsofmetals,anode/cathodeproductionplants,battery

gigafactoriesandEVplantsrequiredtomeetprojecteddemandin2030relativeto2021

Lithium

Nickel

Cobalt

Cathode

Anode

Batterycells

EVs

Batteries

EVs

Source:IEA,2022:175.

Note::STEPS=StatedPolicyScenariosofworldgovernmentspursuanttoParisclimateaccord.

SDS=SustainableDevelopmentScenariosoftheInternationalEnergyAgency.

APS=AnnouncedPledgesScenario(AssumedcomparabletoSDSabove).

Ina2022articletitled“TheRaw-MaterialsChallenge:HowtheMetals

andMiningSectorWillBeAttheCoreofEnablingtheEnergyTransi-

tion,”theMcKinseycompanyshowshowitenvisionsthesupplyofraw

materialsformetalswouldhavetoexpandfromcurrentlevelstomeet

theEVsalesgrowthtargetsunderascenariooflimitingclimatechange

to1.5°C(whichisessentiallytheParisAccordupperlimitforcontaining

climatechange).

As?gure8shows,whileallmetalsproductionisprojectedtoincrease,

lithiumproductionisexpectedtoincreaseover700percent,with

CanMetalMiningMatchtheSpeedofthePlannedElectricVehicleTransition?13

demandrunningsohighthatsubstituteelementscouldberequired

tomeetdemand.

Figure8:RawMaterialSupplyGrowthNeededtoSatisfyPredictedElectricVehicle

SalesGrowth

Supplychange,2010–20vsrequiredgrowthin2020–30ina1.5Cdegreepathway1,percent

???-??

????-??

?

??

??

???

???

???

???

???

???

???

???

Copper

Lithium

Mayrequire

signi?cant

substitution

Neodymium

Nickel

Source:McKinsey,2022.

ISMININGFOREVMETALSANDMINERALSLIKELYTO

KEEPUPWITHPROJECTIONSLIKETHOSEOFTHEIEA

ANDMCKINSEY?

AcriticalassumptionembeddedintheideaofanEVtransitionisthatthe

worldwillbeabletoproducethematerials—particularlythemetals—

neededtobuildelectricvehicles,ingovernment’schosenquantities,

ongovernment’schosentimelines.Thosematerialsincludenumerous

metals,includingcopper,lithium,nickel,manganese,cobalt,graphite,

andasmatteringofothermetalsandmineralsgenerallylumpedinto

thecategoryofrareearthelements.Skepticalvoicesare,well,skeptical.

InaninterviewwithYahoo!Finance,KeithPhillips,CEOofPiedmont

Lithium(PLL),toldreporterAkikoFujitathat“There’sgoingtobeareal

crunchtogetthematerial.Wedon’thaveenoughintheworldtoturn

thatmuch[lithium]productionintheworldby2035.”Phillipscontinued

toexplainthat,“…aslowpermittingprocesshasstalledapprovalsfor

newproductionsites.Meanwhile,Chinahascontinuedtodominate

theindustry,re?ningmorethanhalfofalllithiumsupplywhileAus-

traliaandChileremainthelargestproducersintheworld.Projectsget

permitted[inAustralia]inunderayear…Here,it’stwo,four,six,seven,

eightyears,whichisaproblem,especiallyinabusinessthat’sbooming

sofast”(Fujita,2022).

OthersbelievethefearsofaLithiumcrunchareoverblown.Inanarticle

byDavidKramerinPhysicsToday,Benchmark(amineral-marketanal-

ysis?rm)productdirectorAndrewMillerobservesthatwhileforecast

shortagestakeintoaccountwhat’shappeningnow,andknowntobe

indevelopment,“lithiumisnotscarce,sothequestionishowquickly

resourcescanbedevelopedoracceleratedtomeettheserequirements.”

Inthesamearticle,RoderickEggert,aneconomicsprofessorattheCol-

oradoSchoolofMines,isquotedasobserving,“Thereisasigni?cant

amountofunusedminingcapacity,principallyinAustralia,thatshould

allowgrowthindemandoverthenextfewyearstobemetwithouta

14

CanMetalMiningMatchtheSpeedofthePlannedElectricVehicleTransition?15

dramaticincreaseinprice.”Eggertfurtherobservesthat“Therearea

lotofundevelopedresourcesfrombothAustraliaandSouthAmerica,

andtheywillcompeteagainstoneanother”(Kramer,2021).

Forallthatminingisamassiveglobalendeavour,harddataonthe

timelinesofminingplanning,permitting,construction,andproduc-

tionarescarceinpubliclyaccessibleliterature.TheFraserInstitutehas

attemptedtomeasuretimelineuncertainty,anditsgrowth,inpubli-

cationssince2015.Inthe?rsteffort,theauthor(withcolleagueTaylor

Jackson),lookedatthetimelinesofpermitacquisitioninCanada.What

wefound,eventhen,isgroundsforskepticismabouttherapidexpan-

sionofminingactivitiesinCanada,orincountrieswithcomparable

regulatoryregimes(GreenandJackson,2015).

As?gure9shows,evenin2014(whenthedatawasgathered)mining

permittimesinCanadawereperceivedbyminingcompanyexecutives

(globally)tohavebeenlengtheningfor10years.

Miningpermittinganddevelopmenttimelinesdonotlookmuchbetter

intheUnitedStates.InanarticleinMiningMagazinefrom2020,Kevin

ShawandDanWhitmoregiveanexampleofoneUS-basedmining

endeavourthattookratherlongerthanexpected:“Thepropertyfor

theKensingtongoldminewaspurchasedin1987.Theinitialpermits

Figure9:ChangesintheTime-to-PermitApproval,2004to2014.

LengthenedConsiderably

LengthenedSomewhat

StayedtheSame

Source:JacksonandGreen,2015:5.

16KennethP.Green

fortheminewererequestedin1990,andproductionwasanticipated

tocommencein1993;however,aseriesofpermittingissuesresulted

inthemineonlybeginningcommercialproductionin2010(adelay

of17years).Litigationconcerningakeypermitthathadbeenissued

wentallthewaytotheU.S.SupremeCourtbeforebeingupheld.Atthe

outset,theKensingtongoldminewasestimatedtocostUS$195mil-

liontobuild.The?nalcostforconstructionwasUS$290million.Atthe

beginningoftheproject,productioncostswereestimatedtobeUS$225

perounceofgold.Attheend,productioncostshadincreasedby34

percentperounceandthecompanyreduceditsanticipatedproduction

ofgoldbyalmostathird”(ShawandWhitmore,2020).

ShawandWhitmoredescribedanotherUSminingproject,theRose-

montCopperproject,thatwassubmittedtotheUSForestservicefor

approvalin2007,butlitigationandoppositionbyindigenousgroups

delayedtheprojectforover13years(ShawandWhitmore,2020).

A2016reportbytheUnitedStatesGovernmentAccountabilityOf?ce

(GAO)issomewhatdated,butitskey?ndingsarestillrevealing:

From?scalyears2010through2014,BLM[BureauofLandManage-

ment]approved66mineplans,andtheForestServiceapproved2

mineplansforhardrockminesthatvariedbymineraltype,mine

size,andlocation.Thelengthoftimeittookfortheagenciesto

reachthethirdstepofthe?ve-stepmineplanreviewprocess—the

stepinwhichthemineplanisapproved—rangedfromabout1

monthtoover11yearsandaveragedapproximately2years.(GAO,

2016)

In?gure10,theInternationalEnergyAdministrationalsooffersdata

regardingthetimelinesfordevelopmentoflithiumandnickelmines,

bothgloballyandinselectjurisdictions.Asareminder,lithium,the

componentmostcrucialforelectricvehiclebatteries,islikelytobethe

rate-controllingmetalneededfortheEVtransitiontounfoldaccording

tothevariousambitiousgovernmentaltimelines.

TheIEAalsodiscussestheimportanceofinvestmentleadtimesinthe

productionofvariouselementsandstagesofEVbatteryproduction.

CanMetalMiningMatchtheSpeedofthePlannedElectricVehicleTransition?17

Figure10:MiningProjectDevelopmentLeadTimes(inYears)

Projectdevelopmentleadtimes:Markettightnesscanappearmuchmorequicklythannewprojects

Lithium(Australia)

Lithium(SouthAmerica)

Nickel(Sul?de)

Nickel(Laterite)

Copper

Source:IEA,2021b:122.

Figure11showswhatIEAconsiders“typical”leadtimestoinitialpro-

duction(i.e.,mining)oflithium,nickel,andbatterycathodeingredients

(suchascobaltandmagnesium),productionofthebatteriesthem-

selves,andproductionofelectricvehicles.Ascanbeseen,thelead

times—thetimebeforeproductionbegins—arerelativelyshortfor

theactualmanufacturingandbuildingofproducts(EVsandbatteries),

butsigni?cantlylongerforthemetalsandmineralsthatgointothem.

WhiletheleadtimeformanufacturedaspectsofEVproduction,such

asEVproductionitself,isonlyestimatedataboutthreeyearsinthis

?gure,andbatteryproductionatabout?veyears,lithiumandnickel

leadtimesareupwardsof15years.

Finally,historictrendsinmining,atleastint

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論