




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
FAILURETOCHARGE
ACriticalLookatCanada’sEVPolicy
ExecutiveSummary
Canada’sgovernmenthasestablishedpoliciesdesignedtopush
automakerstoachievethegovernment’sgoalofhaving35percent
ofallnewmedium-andheavy-dutyvehiclesalesbeelectricby2030,
risingto100percentofallnewmedium-andheavy-dutyvehicle
salesbeingelectricby2040.
RockwoodLithiumMineinSilverCity,Nevada,USA
2
KennethP.Green
by2030,alongwith60newnickelmines,and17newcobaltmines.The
materialsneededforcathodeproductionwillrequire50morenew
mines,andanodematerialsanother40.Thebatterycellswillrequire
90newmines,andEVsthemselvesanother81.Intotal,thisaddsupto
388newmines.Forcontext,asof2021,therewereonly270metalmines
operatingacrosstheUS,andonly70inCanada.IfCanadaandtheUS
wishtohaveinternalsupplychainsforthesevitalEVmetals,theyhave
alotofminestoestablishinaveryshortperiod.
Historically,however,miningandre?n-
ingfacilitiesarebothslowtodevelop
“
Miningandre?ningfacilities
arebothslowtodevelopand
arehighlyuncertainendeavors
plaguedbyregulatoryuncer-
taintyandbyenvironmental
andregulatorybarriers.”
andarehighlyuncertainendeavors
plaguedbyregulatoryuncertainty
andbyenvironmentalandregulatory
barriers.Lithiumproductiontime-
lines,forexample,areapproximately
6to9years,whileproductiontime-
lines(fromapplicationtoproduction)
fornickelareapproximately13to18
years,accordingtotheIEA.
Theestablishmentofaggressiveandshort-termEVadoptiongoals
setsupapotentialcon?ictwithmetalandmineralproduction,which
ishistoricallycharacterizedbylonglead-timesandlongproduction
timelines.Theriskthatmineralandminingproductionwillfallshortof
projecteddemandissigni?cant,andcouldgreatlyaffectthesuccessof
variousgovernments’plansforEVtransition.
POLICYBACKGROUND
Concernedabouttheprospectsofsevereman-madeclimatechange,
governmentsaroundtheworldhaveinstitutedprogramstophaseout
theuseoffossilfuel-powered,internalcombustion-driventranspor-
tationsystems—beginningprimarilywithcarsandlighttrucks—and
replacethemwithBattery-ElectricVehicles(BEV);orvehiclesmostly
poweredbyelectricitybutwhichalsofeatureinternalcombustion
backuppower,calledPlug-inHybridElectricVehicles(PHEVs).
InDecember2022,theCanadiangovernmentintroducedregulations
thatwouldleadtothephasingoutofsalesofnewfossil-fuelpowered,
internalcombustionvehicles,tobereplacedbysalesofvehiclesdesig-
natedas“ZeroEmissionVehicles,”orZEVinlegislation.Canada’sAction
1
Planwill“setannuallyincreasingrequirementstowardsachieving100
percentnewlight-dutyzero-emissionvehiclesalesby2035,including
mandatoryinterimtargetsofatleast20percentofallnewlight-duty
vehiclesofferedforsaleby2026andatleast60percentby2030”
(Canada,2022).
Further,toreduceemissionsfrommedium-andheavy-dutyvehicles:
TheGovernmentofCanadawillaimtoreach35percentoftotal
newmedium-andheavy-dutyvehiclesalesbeingzero-emis-
sionvehiclesby2030.Inaddition,theGovernmentwilldevelop
amedium-andheavy-dutyzero-emissionvehicleregulationto
require100percentofnewmedium-andheavy-dutyvehiclesales
tobezero-emissionvehiclesby2040forasubsetofvehicletypes
basedonfeasibility,withinterim2030regulatedsalesrequire-
mentsthatwouldvaryfordifferentvehiclecategoriesbasedon
feasibility,andexploreinterimtargetsforthemid-2020s.(Govern-
mentofCanada,2022)
Accordingtothecost-bene?tanalysispublishedintheCanadaGazette
describingCanada’snewZEVtransitionplan:
1
ThiscategorizationschemeincludesBEVsonly,notPHEVs.
3
4
KennethP.Green
From2026to2050,theproposedAmendmentsareestimatedto
haveincrementalZEVvehicleandhomechargercostsof$24.5bil-
lion,whilesaving$33.9billioninnetenergycosts.Theseimpacts
accruetothosewhoswitchtoZEVsinresponsetotheproposed
Amendments.ThecumulativeGHGemissionreductionsareesti-
matedtobe430megatons(Mt),valuedat$19.2billioninavoided
globaldamages.TheproposedAmendmentsarethusestimatedto
havenetbene?tsof$28.6billionandwouldhelpCanadameetits
GHGemissionsreductiontargetsof40percentbelow2005levels
by2030andnet-zeroemissionsby2050.(CanadaGazette,2022)
AsCanadaandtheUnitedStatesshareanintegratedautomobilemar-
ket,itisalsoworthnotingthattheUShasplansforatransitionto
electricvehicles,thoughthestrategiesof
thetwocountriesdifferconsiderably.US
andCanadianplansforvehicleelectri?ca-
tionaredifferentinformsandfunctions,
timelines,andtargets.The?rstdistinction
isthattheUSincludesplug-inhybridelec-
tricvehiclesintoits“ZEV”category,along
withfuelcellelectricvehicles,whichare
currentlynichevehiclessoldprimarilyin
California,ratherthanmainstreampro-
ductionvehicles(Voelcker,2022).
IntheUnitedStates,theBidenAdministrationpublishedExecutive
Order14037in2021whichcontainedthestatedgoal“that50percent
ofallnewpassengercarsandlighttruckssoldin2030bezero-emission
vehicles,includingbatteryelectric,plug-inhybridelectric,orfuelcell
electricvehicles”(UnitedStatesFederalRegister,2021).Theinclusion
ofplug-inhybridvehicles(generallynotconsideredtobezero-emis-
sionvehicles)isasigni?cantdistinctionbetweentheUSandCanadian
electricvehicleplans.
PresidentBidenalsoissuedanotherexecutiveorderin2021thatwould
requirethefederalgovernmenttostopacquiringgasoline-powered
carsinitsownvehicle?eets.ExecutiveOrder14057requires“100
CanMetalMiningMatchtheSpeedofthePlannedElectricVehicleTransition?
5
percentzero-emissionvehicleacquisitionsby2035,including100
percentzero-emissionlight-dutyvehicleacquisitionsby2027”(United
StatesFederalRegister,2021b).
Internationally,vehicleelectri?cationgoalsaredifferentstill.TheInter-
nationalEnergyAgency(IEA)initsGlobalEVOutlook2021characterizes
thecollectiveEVtargetof“allexistingpolicies,policyambitionsand
targetsthathavebeenlegislatedfororannouncedbygovernments
aroundtheworld.ItincludescurrentEV-relatedpoliciesandregula-
tions,aswellastheexpectedeffectsofannounceddeploymentsand
plansfromindustrystakeholders.STEPS[the“StatedPolicyScenario”
oftheIEA]aimstoholdupamirrortotheplansofpolicymakersand
illustratetheirconsequences”(IEA2021a:73).
Inthisscenario,theIEA?ndsthat“thecollectivetargetoftheEV30@30
signatories[acoalitionofcitygovernmentsandEVindustrygroups]to
achieve30percentsalessharein2030forlight-dutyvehicles,buses
andtrucksissurpassedatthegloballevel(reachingalmost35%),which
re?ectsincreasingambitionsforwidespreadEVdeployment”(IEA
2021a:73).
Itisself-evidentthatincreasingproductionofelectricvehicleswill
requireacorrespondingincreaseintheconstituentmaterialsfrom
whichtheyaremanufactured.Inthecaseofelectricvehiclespowered
bylargebatteries,onemustassumethatincreasingtheproductionof
electricvehicleswillrequireamassiveincreaseintheproductionof
metalsusedinbatteryandEVmanufacturing,suchaslithium,nickel,
cobalt,copper,manganese,graphite,andotherelementssometimes
designatedasrareearthelements(REEs),orenergycriticalelements.
Canadahasbeguntorampupitsproductionre?ningcapacityforlith-
iumandotherrareearthelementsrequiredfortheelectricvehicletran-
sition.Forexample,theCanadiangovernmentrecentlyshowcasedlith-
iumproductioninCanada.InJamesBay,Quebec,thegovernmenthas
approvedtheJamesBayLithiumMineProject,aproposaltomine5,800
tonnesoflithium-bearingoreperdayintheEastmanCreecommunity
(D’Andrea,2023).InSaskatchewan,thegovernmenthasapprovedaplan
6
KennethP.Green
toproduceandre?nelithiumataplantinthesouthernpartofthe
province.Accordingtothegovernment,“Stageoneoftheprojectwill
produce[fromSaskatchewanoil?eldbrines]1to1.75kilograms(kg)of
lithiumhydroxideperday.Stagetwowillincludetheconstructionof
oneofCanada’s?rstlithiumextractionandre?ningfacilities,which
willproduceapproximatelyonetonneoflithiumhydroxideperday,
resultingin365tonnesperyear.Thiswillserveasademonstrationplant
priortofullcommercialization”(Saskatchewan,2020).
RareearthelementsproductionisalsounderwayintheNWTwiththe
processingandre?ningoftworareearthelementscriticaltothepro-
ductionofpowerfulmagnetsusedinelectricvehiclemotorstotake
placeinSaskatchewan(FrewandPonticelli,2023).TheNechalacho
mine“hostsaworld-classresource”ofrareearthores,relativelyrich
inneodymiumandpraseodymium,metalsusedintheproduction
ofhigh-strengthmagnetsusedinelectricmotorsandbatteryalloys
(VitalMetals,2020).Mostrecently(asoftimeofwriting),theCanadian
governmentannouncedthatitwillpayCAN$13billioninsubsidiesto
VolkswagentoestablishabatterymanufacturingfacilityinOntario
(Scherer,2023).ThispledgewasmatchedwithaCAN$15billionsub-
sidytoStellantisforasecondbatterymanufacturingfacilityinOntario
(Shakil,2023).
TheInternationalEnergyAgencywouldliketoseeCanadamovestill
morequicklyinitsdevelopmentofrareearthminingandre?ning
capacity.AtaCanadiangovernment-organizedpaneldiscussioninFeb-
ruary2023,FatihBirol,theheadoftheIEA,“warnedthattheenergy
shortagescurrentlygrippingEuropecouldberepeatedastheworld
transitionstocleanerfuels,ifWesterncountriesdonotincreasethe
availabilityofrareearthmineralsanddevelopfriendliersourcesof
them.”Further,accordingtoanarticleintheGlobeandMailcovering
theevent,Mr.BirolsaidhewouldliketoseecountrieslikeCanadamore
involvedontheinternationalstagebecause“thereisruleoflaw,there
istransparency,andthereisalsoaccountabilityofthegovernment…
Thesoonerthathappens,thebetter,hesaid”(WalshandGraney,2023).
WHATDOGLOBALVEHICLEELECTRIFICATIONGOALS
LOOKLIKE,NUMERICALLY?
Figure1,fromTheRoleofCriticalMineralsinCleanEnergyTransition,
showsexpectedEVmarketpenetrationto2030underIEA’sSustainable
DevelopmentScenario,orSDS.TheSDSre?ectswhattheIEAbelieves
wouldberequiredtosatisfyinternationalagreementsundertheParis
ClimateAccords(IEA,2021b).
2
Asisreadilyapparentfromthegraph,bothelectricvehiclesalesand
batterystoragecapacitygrowthareexpectedtobeseveralordersof
magnitudegreaterthanproductionin2020.Electriccarsales(inthe
leftpanel),areexpectedtorisefromapproximately3millionin2020,
Figure1:TheAdoptionofEVsandBatteryStorageisSettoAccelerate
RapidlyovertheComingDecades
AnnualelectriccarsalesandbatterystoragecapacityintheSDS
Batterystoragecapacityadditions
80
70
60
50
40
30
20
10
120
100
80
Japan
EuropeanUnion
UnitedStates
India
40
China
20
STEPS(World)
2020
2030
2040
2020
2030
2040
IEA.Allrightsreserved.
Note:Electriccarsincludebatteryelectricandplug-inhybridelectricpassengerlight-dutyvehicles,butexclude2/3-wheelers.
Source:IEA(2020c).
Source:IEA,2021b:84.
2
TheInternationalEnergyAgencypublishesagreatdealofdataregardingelectricvehicle
production,composition,manufacturing,andproductionofrawmaterials.AstheIEAis
consideredanauthoritative,quasi-independentsourceofinformationontheseissues,
wewillrelyheavilyontheirlatestpublicationsinthisstudy.
Atthesametime,theauthormakesnoclaimsregardingtheplausibilityofIEA’smathe-
maticalmodelingusedtogeneratesomeoftheseestimates.However,asitisassumed
thatIEA’sdatawillsigni?cantlyinfusegovernmentpolicydevelopment,thesemodeled
estimatesareworthyofattention.Aswithmostmathematicalmodelingexercises,which
frequentlyrely(ofnecessity)onanarrayofsubjectiveassumptions,theauthoradvises
cautioninassumingthesemodelsarereliablere?ectionsofreality.
7
8
KennethP.Green
Figure2:EVandBatteryStorageDeploymentGrowththrough2040
EVandbatterystoragedeploymentgrowsrapidlyoverthenexttwodecades,
withlight-dutyEVsaccountingforaround80%ofthetotal
Globalbatterycapacityadditions
Heavy-dutyPHEV
Heavy-dutyBEV
Light-dutyPHEV
Light-dutyBEV
????
????
????
????
????
STEPS
SDS
IEAAllrightsreserved
Source:IEA,2021b:87.
Note:STEPS=StatedPolicyScenariosofworldgovernmentspursuanttoParisclimateaccord.
SDS=SustainableDevelopmentScenariosoftheInternationalEnergyAgency.
to40millioninonly10years:amorethan10-foldincrease,andtothen
nearlydoubleinthedecadebetween2030and2040.
ReadersshouldnotethatthisIEAmodelincludes“plug-inhybrid”elec-
tricvehicleswhich,aspreviouslymentioned,arenottreateduniformly
invariousnationalandinternationalplansregardingvehicleelectri?-
cationtargetsandtimelinesdiscussedabove.
Correspondingly,IEAestimatesthatbatteryproductionwillalso
increasesigni?cantlyincomingyearsasisdisplayedin?gure2.
Aswith?gure1,onewillnotethatthe“ramp”ofincreasedbattery
powerproductionisverysteep.AstheIEAstates,“IntheSDS[Sustain-
ableDevelopmentScenarios],globalinstallationofutility-scalebat-
terystorageissetfora25-foldincreasebetween2020and2040,with
annualdeploymentreaching105GWby2040.Thelargestmarketsfor
batterydeploymentin2040areIndia,theUnitedStatesandChina”
(IEA,2021b:86).
Theincreasedproductionofbatterieswillinevitablyleadtoincreased
demandforthemetalsusedintheirfabrication.Hence,theIEAalso
projectssignificantgrowthindemandforEVbatterymetalsand
minerals.
HOWWILLGLOBALVEHICLEELECTRIFICATION
INFLUENCEMINERALANDMETALPRODUCTION
REQUIREMENTS?
AccordingtotheInternationalEnergyAgency,electricvehiclesuse
aboutsixtimesmoreraremetalsthandointernalcombustionvehi-
cles.Figure3breaksthisoutgraphicallybythevariousmetalsrequired
forEVproduction.Thedatain?gure3showthekeymetalsusedin
thevehicleelectri?cationequation.Copper,lithium,nickel,cobalt,and
graphitestandoutsharplyascomponentsofelectricvehiclesthatwill
beneededinquantitiesfarhigherthanisthecaseforconventional
internalcombustionvehicles.
Figure4putsthisinformationintocontextwithrespecttoIEA’spro-
jectedgrowthinmineraldemandforEVsthrough2040.Readerswill
notethatthechartofexpecteddemandessentiallyshowsexponential
growth.Lookingattheright-handpanelofthechart,onenotesthattwo
metals—lithiumandnickel(criticalbatteryelements)areexpectedto
Source:IEA2021d.
9
10KennethP.Green
Figure4:ProjectedGrowthinMineralDemandforEVs,2020through2040.
MineraldemandforEVSintheSDSgrowsbynearly30timesbetween2020and2040,
withdemandforlithiumandnickelgrowingbyaround40times
??
??
??
??
??
??
??
??
?
STEPS
Nickel
Cobalt
Manganese
Copper
Graphite
Silicon
REEs
IEA?Allrightsreserved?
NoteSiliconisexcludedfromthedemandgrowthgraphduetoitsveryhighgrowthover-foldincreasestartingfromalowbase?
Source:IEA,2021b:98.
Note:STEPS=StatedPolicyScenariosofworldgovernmentspursuanttoParisclimateaccord.
SDS=SustainableDevelopmentScenariosoftheInternationalEnergyAgency.
Figure5:DistributionoftheProductionofSelectedMineralsbyGovernance
andEmissionsPerformance,2019
Distributionofproductionofselectedmaterialsbygovernanceandemissionsperformance,2019
100%
Lowgovernancescoreand
highemissionsintensity
80%
Lowgovernancescoreand
lowemissionsintensity
60%
Highgovernancescoreand
highemissionsintensity
40%
20%
Highgovernancescoreand
lowemissionsintensity
Copper
Lithium
Nickel
Cobalt
IEA.Allrightsreserved.
Source:IEA,2021b:126.
CanMetalMiningMatchtheSpeedofthePlannedElectricVehicleTransition?11
seethegreatestgrowthindemand,followedbycopper(akeycompo-
nentofelectronicsystems),andgraphite,alsoacriticalcomponentin
theproductionofbatteries.Addeddemandforsteel-makingmetals
(manganeseandcobalt),whilelarge,islowerthanthatrelatedtoEV
batteryproduction.
Figure5showswheretheInternationalEnergyAgencyexpectsthemet-
alsandmineralsneededfortheelectricvehicletransitiontocomefrom,
andcharacterizesthequalityofgovernanceintheminingregionsthat
currentlyproduceneededEVmetals.
Figure6suggests,further,thattheIEAdoesnotexpecttheproduction
localesofthesecriticalmetalstochangeverymuchinthenearfuture.
HowwillallofthisplayoutwithregardtotheminingofEVbattery
metalsandminerals?InitsGlobalElectricVehicleOutlook2022,theIEA
againoffersestimates.AsFigure7shows,bothofIEA’sfuturescenarios
requireamassiveincreaseinthenumberofminesneededtoprovide
materialsforeveryaspectoftheEVtransition.Fiftynewlithiummines
areneededby2030,inthe“AnnouncedPledgesscenario”(avariation
Figure6:ExpectedChangeinDistributionofCountriesProducing
EVMinerals,2019to2025
Geographicconcentration:Analysisofprojectpipelinesindicatesthat,inmostcases,the
geographicalconcentrationofproductionisunlikelytochangeinthenearterm
???
???
???
??
2015
2025
2025
2015
2025
2015
2025
2025
Copper
Nickel
Cobalt
Source:IEA,2021b:121.
12KennethP.Green
ontheSTEPSscenariobasedonestablishedgovernmentpledges)along
with60morenickelmines,and17morecobaltmines.Thematerials
neededforcathodeproductionwillrequire50moremines,andanode
materialsanother40.Thebatterycellswillrequire90moremines,and
EVsthemselvesanother81(IEA,2022:175).Intotal,thisis388new
mines.Forcontext,asof2021,therewereonly270metalminesoper-
atingacrosstheUS,andonly70inCanada.
Figure7:NumberofMinesRequiredtoProduceNeededMineralsfortheGrowthofElectricVehicles
Numberofminestoproducerequiredlevelsofmetals,anode/cathodeproductionplants,battery
gigafactoriesandEVplantsrequiredtomeetprojecteddemandin2030relativeto2021
Lithium
Nickel
Cobalt
Cathode
Anode
Batterycells
EVs
Batteries
EVs
Source:IEA,2022:175.
Note::STEPS=StatedPolicyScenariosofworldgovernmentspursuanttoParisclimateaccord.
SDS=SustainableDevelopmentScenariosoftheInternationalEnergyAgency.
APS=AnnouncedPledgesScenario(AssumedcomparabletoSDSabove).
Ina2022articletitled“TheRaw-MaterialsChallenge:HowtheMetals
andMiningSectorWillBeAttheCoreofEnablingtheEnergyTransi-
tion,”theMcKinseycompanyshowshowitenvisionsthesupplyofraw
materialsformetalswouldhavetoexpandfromcurrentlevelstomeet
theEVsalesgrowthtargetsunderascenariooflimitingclimatechange
to1.5°C(whichisessentiallytheParisAccordupperlimitforcontaining
climatechange).
As?gure8shows,whileallmetalsproductionisprojectedtoincrease,
lithiumproductionisexpectedtoincreaseover700percent,with
CanMetalMiningMatchtheSpeedofthePlannedElectricVehicleTransition?13
demandrunningsohighthatsubstituteelementscouldberequired
tomeetdemand.
Figure8:RawMaterialSupplyGrowthNeededtoSatisfyPredictedElectricVehicle
SalesGrowth
Supplychange,2010–20vsrequiredgrowthin2020–30ina1.5Cdegreepathway1,percent
???-??
????-??
?
??
??
???
???
???
???
???
???
???
???
Copper
Lithium
Mayrequire
signi?cant
substitution
Neodymium
Nickel
Source:McKinsey,2022.
ISMININGFOREVMETALSANDMINERALSLIKELYTO
KEEPUPWITHPROJECTIONSLIKETHOSEOFTHEIEA
ANDMCKINSEY?
AcriticalassumptionembeddedintheideaofanEVtransitionisthatthe
worldwillbeabletoproducethematerials—particularlythemetals—
neededtobuildelectricvehicles,ingovernment’schosenquantities,
ongovernment’schosentimelines.Thosematerialsincludenumerous
metals,includingcopper,lithium,nickel,manganese,cobalt,graphite,
andasmatteringofothermetalsandmineralsgenerallylumpedinto
thecategoryofrareearthelements.Skepticalvoicesare,well,skeptical.
InaninterviewwithYahoo!Finance,KeithPhillips,CEOofPiedmont
Lithium(PLL),toldreporterAkikoFujitathat“There’sgoingtobeareal
crunchtogetthematerial.Wedon’thaveenoughintheworldtoturn
thatmuch[lithium]productionintheworldby2035.”Phillipscontinued
toexplainthat,“…aslowpermittingprocesshasstalledapprovalsfor
newproductionsites.Meanwhile,Chinahascontinuedtodominate
theindustry,re?ningmorethanhalfofalllithiumsupplywhileAus-
traliaandChileremainthelargestproducersintheworld.Projectsget
permitted[inAustralia]inunderayear…Here,it’stwo,four,six,seven,
eightyears,whichisaproblem,especiallyinabusinessthat’sbooming
sofast”(Fujita,2022).
OthersbelievethefearsofaLithiumcrunchareoverblown.Inanarticle
byDavidKramerinPhysicsToday,Benchmark(amineral-marketanal-
ysis?rm)productdirectorAndrewMillerobservesthatwhileforecast
shortagestakeintoaccountwhat’shappeningnow,andknowntobe
indevelopment,“lithiumisnotscarce,sothequestionishowquickly
resourcescanbedevelopedoracceleratedtomeettheserequirements.”
Inthesamearticle,RoderickEggert,aneconomicsprofessorattheCol-
oradoSchoolofMines,isquotedasobserving,“Thereisasigni?cant
amountofunusedminingcapacity,principallyinAustralia,thatshould
allowgrowthindemandoverthenextfewyearstobemetwithouta
14
CanMetalMiningMatchtheSpeedofthePlannedElectricVehicleTransition?15
dramaticincreaseinprice.”Eggertfurtherobservesthat“Therearea
lotofundevelopedresourcesfrombothAustraliaandSouthAmerica,
andtheywillcompeteagainstoneanother”(Kramer,2021).
Forallthatminingisamassiveglobalendeavour,harddataonthe
timelinesofminingplanning,permitting,construction,andproduc-
tionarescarceinpubliclyaccessibleliterature.TheFraserInstitutehas
attemptedtomeasuretimelineuncertainty,anditsgrowth,inpubli-
cationssince2015.Inthe?rsteffort,theauthor(withcolleagueTaylor
Jackson),lookedatthetimelinesofpermitacquisitioninCanada.What
wefound,eventhen,isgroundsforskepticismabouttherapidexpan-
sionofminingactivitiesinCanada,orincountrieswithcomparable
regulatoryregimes(GreenandJackson,2015).
As?gure9shows,evenin2014(whenthedatawasgathered)mining
permittimesinCanadawereperceivedbyminingcompanyexecutives
(globally)tohavebeenlengtheningfor10years.
Miningpermittinganddevelopmenttimelinesdonotlookmuchbetter
intheUnitedStates.InanarticleinMiningMagazinefrom2020,Kevin
ShawandDanWhitmoregiveanexampleofoneUS-basedmining
endeavourthattookratherlongerthanexpected:“Thepropertyfor
theKensingtongoldminewaspurchasedin1987.Theinitialpermits
Figure9:ChangesintheTime-to-PermitApproval,2004to2014.
LengthenedConsiderably
LengthenedSomewhat
StayedtheSame
Source:JacksonandGreen,2015:5.
16KennethP.Green
fortheminewererequestedin1990,andproductionwasanticipated
tocommencein1993;however,aseriesofpermittingissuesresulted
inthemineonlybeginningcommercialproductionin2010(adelay
of17years).Litigationconcerningakeypermitthathadbeenissued
wentallthewaytotheU.S.SupremeCourtbeforebeingupheld.Atthe
outset,theKensingtongoldminewasestimatedtocostUS$195mil-
liontobuild.The?nalcostforconstructionwasUS$290million.Atthe
beginningoftheproject,productioncostswereestimatedtobeUS$225
perounceofgold.Attheend,productioncostshadincreasedby34
percentperounceandthecompanyreduceditsanticipatedproduction
ofgoldbyalmostathird”(ShawandWhitmore,2020).
ShawandWhitmoredescribedanotherUSminingproject,theRose-
montCopperproject,thatwassubmittedtotheUSForestservicefor
approvalin2007,butlitigationandoppositionbyindigenousgroups
delayedtheprojectforover13years(ShawandWhitmore,2020).
A2016reportbytheUnitedStatesGovernmentAccountabilityOf?ce
(GAO)issomewhatdated,butitskey?ndingsarestillrevealing:
From?scalyears2010through2014,BLM[BureauofLandManage-
ment]approved66mineplans,andtheForestServiceapproved2
mineplansforhardrockminesthatvariedbymineraltype,mine
size,andlocation.Thelengthoftimeittookfortheagenciesto
reachthethirdstepofthe?ve-stepmineplanreviewprocess—the
stepinwhichthemineplanisapproved—rangedfromabout1
monthtoover11yearsandaveragedapproximately2years.(GAO,
2016)
In?gure10,theInternationalEnergyAdministrationalsooffersdata
regardingthetimelinesfordevelopmentoflithiumandnickelmines,
bothgloballyandinselectjurisdictions.Asareminder,lithium,the
componentmostcrucialforelectricvehiclebatteries,islikelytobethe
rate-controllingmetalneededfortheEVtransitiontounfoldaccording
tothevariousambitiousgovernmentaltimelines.
TheIEAalsodiscussestheimportanceofinvestmentleadtimesinthe
productionofvariouselementsandstagesofEVbatteryproduction.
CanMetalMiningMatchtheSpeedofthePlannedElectricVehicleTransition?17
Figure10:MiningProjectDevelopmentLeadTimes(inYears)
Projectdevelopmentleadtimes:Markettightnesscanappearmuchmorequicklythannewprojects
Lithium(Australia)
Lithium(SouthAmerica)
Nickel(Sul?de)
Nickel(Laterite)
Copper
Source:IEA,2021b:122.
Figure11showswhatIEAconsiders“typical”leadtimestoinitialpro-
duction(i.e.,mining)oflithium,nickel,andbatterycathodeingredients
(suchascobaltandmagnesium),productionofthebatteriesthem-
selves,andproductionofelectricvehicles.Ascanbeseen,thelead
times—thetimebeforeproductionbegins—arerelativelyshortfor
theactualmanufacturingandbuildingofproducts(EVsandbatteries),
butsigni?cantlylongerforthemetalsandmineralsthatgointothem.
WhiletheleadtimeformanufacturedaspectsofEVproduction,such
asEVproductionitself,isonlyestimatedataboutthreeyearsinthis
?gure,andbatteryproductionatabout?veyears,lithiumandnickel
leadtimesareupwardsof15years.
Finally,historictrendsinmining,atleastint
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年考試實戰技能訓練試題及答案
- 正規換貨協議書范本
- 交接協議書格式范文
- 農村提升改造協議書
- 活動定制協議書范本
- 借款擔保協議書過期
- 贈送領養狗狗協議書
- 孫女撫養協議書模板
- 樓宇招商意向協議書
- 員工派遣協議書范本
- GB/T 4513.1-2015不定形耐火材料第1部分:介紹和分類
- GB/T 23641-2018電氣用纖維增強不飽和聚酯模塑料(SMC/BMC)
- 中醫經絡之手太陰肺經課件講義
- 裝配式建筑施工組織設計(修改)
- 廣西基本醫療保險門診特殊慢性病申報表
- 維維食品飲料有限公司-質量獎自我評價報告
- 土壤分析技術規范(第二版)
- 食品從業者工作服清洗消毒記錄
- 裝修單項項目確認單
- 華為員工準則手冊
- 分子生態學1分子標記
評論
0/150
提交評論