




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,復(fù)數(shù),,且為實(shí)數(shù),則()A. B. C.3 D.-32.過(guò)拋物線的焦點(diǎn)的直線交該拋物線于,兩點(diǎn),為坐標(biāo)原點(diǎn).若,則直線的斜率為()A. B. C. D.3.用一個(gè)平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形4.在平行四邊形中,若則()A. B. C. D.5.若,滿足約束條件,則的取值范圍為()A. B. C. D.6.在中,角所對(duì)的邊分別為,已知,則()A.或 B. C. D.或7.已知數(shù)列的首項(xiàng),且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有8.已知是虛數(shù)單位,若,,則實(shí)數(shù)()A.或 B.-1或1 C.1 D.9.雙曲線的漸近線方程是()A. B. C. D.10.已知拋物線,過(guò)拋物線上兩點(diǎn)分別作拋物線的兩條切線為兩切線的交點(diǎn)為坐標(biāo)原點(diǎn)若,則直線與的斜率之積為()A. B. C. D.11.若復(fù)數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.12.設(shè)命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若曲線(其中常數(shù))在點(diǎn)處的切線的斜率為1,則________.14.若,則的最小值為_(kāi)_______.15.已知曲線,點(diǎn),在曲線上,且以為直徑的圓的方程是.則_______.16.已知函數(shù),若關(guān)于的方程恰有四個(gè)不同的解,則實(shí)數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在直三棱柱中,分別是中點(diǎn),且,.求證:平面;求點(diǎn)到平面的距離.18.(12分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大?。唬?)在棱上確定一點(diǎn),使二面角的平面角的余弦值為.19.(12分)已知函數(shù).(1)解不等式;(2)若,,,求證:.20.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程以及曲線的直角坐標(biāo)方程;(2)若直線與曲線、曲線在第一象限交于兩點(diǎn),且,點(diǎn)的坐標(biāo)為,求的面積.21.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線與曲線的普通方程,并求出直線的傾斜角;(2)記直線與軸的交點(diǎn)為是曲線上的動(dòng)點(diǎn),求點(diǎn)的最大距離.22.(10分)直線與拋物線相交于,兩點(diǎn),且,若,到軸距離的乘積為.(1)求的方程;(2)設(shè)點(diǎn)為拋物線的焦點(diǎn),當(dāng)面積最小時(shí),求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
把和代入再由復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn),利用虛部為0求得m值.【詳解】因?yàn)闉閷?shí)數(shù),所以,解得.【點(diǎn)睛】本題考查復(fù)數(shù)的概念,考查運(yùn)算求解能力.2、D【解析】
根據(jù)拋物線的定義,結(jié)合,求出的坐標(biāo),然后求出的斜率即可.【詳解】解:拋物線的焦點(diǎn),準(zhǔn)線方程為,設(shè),則,故,此時(shí),即.則直線的斜率.故選:D.【點(diǎn)睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.3、C【解析】試題分析:畫(huà)出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫(huà)出五邊形但不是正五邊形;故選C.考點(diǎn):平面的基本性質(zhì)及推論.4、C【解析】
由,,利用平面向量的數(shù)量積運(yùn)算,先求得利用平行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,
平行四邊形中,,
,,,
因?yàn)?
所以
,
,所以,故選C.【點(diǎn)睛】本題主要考查向量的幾何運(yùn)算以及平面向量數(shù)量積的運(yùn)算法則,屬于中檔題.向量的運(yùn)算有兩種方法:(1)平行四邊形法則(平行四邊形的對(duì)角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).5、B【解析】
根據(jù)約束條件作出可行域,找到使直線的截距取最值得點(diǎn),相應(yīng)坐標(biāo)代入即可求得取值范圍.【詳解】畫(huà)出可行域,如圖所示:由圖可知,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),取得最小值-5;經(jīng)過(guò)點(diǎn)時(shí),取得最大值5,故.故選:B【點(diǎn)睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.6、D【解析】
根據(jù)正弦定理得到,化簡(jiǎn)得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點(diǎn)睛】本題考查了正弦定理解三角形,意在考查學(xué)生的計(jì)算能力.7、C【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時(shí),,顯然符合是等差數(shù)列,但是此時(shí)不成立,故本說(shuō)法不正確;B:當(dāng)時(shí),,顯然符合是等比數(shù)列,但是此時(shí)不成立,故本說(shuō)法不正確;C:當(dāng)時(shí),因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時(shí),一定有,故本說(shuō)法正確;D:當(dāng)時(shí),若時(shí),顯然數(shù)列是等比數(shù)列,故本說(shuō)法不正確.故選:C【點(diǎn)睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.8、B【解析】
由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題9、C【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點(diǎn)睛】本題考查雙曲線的漸近線方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意雙曲線的簡(jiǎn)單性質(zhì)的合理運(yùn)用.10、A【解析】
設(shè)出A,B的坐標(biāo),利用導(dǎo)數(shù)求出過(guò)A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫(xiě)出OA,OB所在直線的斜率,作積得答案.【詳解】解:設(shè)A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點(diǎn)睛:(1)本題主要考查拋物線的簡(jiǎn)單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學(xué)生對(duì)這些基礎(chǔ)知識(shí)的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點(diǎn),先設(shè)A,B,,再求切線PA,PB方程,求點(diǎn)P坐標(biāo),再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點(diǎn)P的坐標(biāo),計(jì)算量就大一些.11、A【解析】
由得,然后分子分母同時(shí)乘以分母的共軛復(fù)數(shù)可得復(fù)數(shù),從而可得的虛部.【詳解】因?yàn)?所以,所以復(fù)數(shù)的虛部為.故選A.【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算和復(fù)數(shù)的概念,屬于基礎(chǔ)題.復(fù)數(shù)除法運(yùn)算的方法是分子分母同時(shí)乘以分母的共軛復(fù)數(shù),轉(zhuǎn)化為乘法運(yùn)算.12、C【解析】
命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關(guān)系、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用導(dǎo)數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.14、【解析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等號(hào)取得的條件。【詳解】由題意,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以當(dāng)時(shí),取得最小值.【點(diǎn)睛】利用基本不等式求最值必須具備三個(gè)條件:①各項(xiàng)都是正數(shù);②和(或積)為定值;③等號(hào)取得的條件。15、【解析】
設(shè)所在直線方程為設(shè)?點(diǎn)坐標(biāo)分別為,,都在上,代入曲線方程,兩式作差可得,從而可得直線的斜率,聯(lián)立直線與的方程,由,利用弦長(zhǎng)公式即可求解.【詳解】因?yàn)槭菆A的直徑,必過(guò)圓心點(diǎn),設(shè)所在直線方程為設(shè)?點(diǎn)坐標(biāo)分別為,,都在上,故兩式相減,可得(因?yàn)槭堑闹悬c(diǎn)),即聯(lián)立直線與的方程:又,即,即又因?yàn)?,則有即∴.故答案為:【點(diǎn)睛】本題考查了直線與圓錐曲線的位置關(guān)系、弦長(zhǎng)公式,考查了學(xué)生的計(jì)算能力,綜合性比較強(qiáng),屬于中檔題.16、【解析】
設(shè),判斷為偶函數(shù),考慮x>0時(shí),的解析式和零點(diǎn)個(gè)數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,作函數(shù)大致圖象,即可得到的范圍.【詳解】設(shè),則在是偶函數(shù),當(dāng)時(shí),,由得,記,,,故函數(shù)在增,而,所以在減,在增,,當(dāng)時(shí),,當(dāng)時(shí),,因此的圖象為因此實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查了函數(shù)的零點(diǎn)的個(gè)數(shù)問(wèn)題,涉及構(gòu)造函數(shù),函數(shù)的奇偶性,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,考查了數(shù)形結(jié)合思想方法,以及化簡(jiǎn)運(yùn)算能力和推理能力,屬于難題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)詳見(jiàn)解析;(2).【解析】
(1)利用線面垂直的判定定理和性質(zhì)定理即可證明;(2)取中點(diǎn)為,則,證得平面,利用等體積法求解即可.【詳解】(1)因?yàn)?,,,是的中點(diǎn),,為直三棱柱,所以平面,因?yàn)闉橹悬c(diǎn),所以平面,,又,平面(2),又分別是中點(diǎn),.由(1)知,,又平面,取中點(diǎn)為,連接如圖,則,平面,設(shè)點(diǎn)到平面的距離為,由,得,即,解得,點(diǎn)到平面的距離為.【點(diǎn)睛】本題考查線面垂直的判定定理和性質(zhì)定理、等體積法求點(diǎn)到面的距離;考查邏輯推理能力和運(yùn)算求解能力;熟練掌握線面垂直的判定定理和性質(zhì)定理是求解本題的關(guān)鍵;屬于中檔題.18、(1)(2)【解析】試題分析:(1)因?yàn)锳B⊥AC,A1B⊥平面ABC,所以以A為坐標(biāo)原點(diǎn),分別以AC、AB所在直線分別為x軸和y軸,以過(guò)A,且平行于BA1的直線為z軸建立空間直角坐標(biāo)系,由AB=AC=A1B=2求出所要用到的點(diǎn)的坐標(biāo),求出棱AA1與BC上的兩個(gè)向量,由向量的夾角求棱AA1與BC所成的角的大小;
(2)設(shè)棱B1C1上的一點(diǎn)P,由向量共線得到P點(diǎn)的坐標(biāo),然后求出兩個(gè)平面PAB與平面ABA1的一個(gè)法向量,把二面角P-AB-A1的平面角的余弦值為,轉(zhuǎn)化為它們法向量所成角的余弦值,由此確定出P點(diǎn)的坐標(biāo).試題解析:解(1)如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,則,.,故與棱所成的角是.(2)為棱中點(diǎn),設(shè),則.設(shè)平面的法向量為,,則,故而平面的法向量是,則,解得,即為棱中點(diǎn),其坐標(biāo)為.點(diǎn)睛:本題主要考查線面垂直的判定與性質(zhì),以及利用空間向量求二面角.空間向量解答立體幾何問(wèn)題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫(xiě)出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.19、(1);(2)證明見(jiàn)解析.【解析】
(1)分、、三種情況解不等式,即可得出該不等式的解集;(2)利用分析法可知,要證,即證,只需證明即可,因式分解后,判斷差值符號(hào)即可,由此證明出所證不等式成立.【詳解】(1).當(dāng)時(shí),由,解得,此時(shí);當(dāng)時(shí),不成立;當(dāng)時(shí),由,解得,此時(shí).綜上所述,不等式的解集為;(2)要證,即證,因?yàn)?,,所以,,?所以,.故所證不等式成立.【點(diǎn)睛】本題考查絕對(duì)值不等式的求解,同時(shí)也考查了利用分析法和作差法證明不等式,考查分類討論思想以及推理能力,屬于中等題.20、(1)的極坐標(biāo)方程為,的直角坐標(biāo)方程為(2)【解析】
(1)先把曲線的參數(shù)方程消參后,轉(zhuǎn)化為普通方程,再利用求得極坐標(biāo)方程.將,化為,再利用求得曲線的普通方程.(2)設(shè)直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因?yàn)?,故,即,?(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.【點(diǎn)睛】本題考查極坐標(biāo)方程與直角坐標(biāo)方程、參數(shù)方程與普通方程的轉(zhuǎn)化、極坐標(biāo)的幾何意義,還考查推理論證能力以及數(shù)形結(jié)合思想,屬于中檔題.21、(1)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025標(biāo)準(zhǔn)商業(yè)借款合同范本
- 2024年診斷用藥項(xiàng)目資金需求報(bào)告代可行性研究報(bào)告
- 2025年視覺(jué)識(shí)別設(shè)計(jì)合同范本
- 2025信托公司與銀行存款保管合同
- 2025解除勞動(dòng)合同協(xié)議書(shū)樣本格式
- 2025商業(yè)店鋪?zhàn)赓U合同模板
- 2025年度合作合同貨車掛靠協(xié)議
- 2025華瑞科技產(chǎn)品銷售合同副本(修正版)
- 2025健身教練勞動(dòng)合同范本
- 2025音樂(lè)演出取消、延遲保險(xiǎn)合同
- T-MSC 005-2024 靈芝孢子油生產(chǎn)加工技術(shù)規(guī)范
- 2025年廣州鐵路職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試題庫(kù)附答案
- 電子商務(wù)訂單處理流程優(yōu)化計(jì)劃
- 藝術(shù)中的記憶與遺忘-深度研究
- TSCBDIF 001-2024 AI 大模型應(yīng)用能力成熟度評(píng)價(jià)標(biāo)準(zhǔn)
- 《大學(xué)生創(chuàng)新創(chuàng)業(yè)基礎(chǔ)》選修筆記
- 社交媒體招聘效果評(píng)估-深度研究
- 譜寫(xiě)全球南方團(tuán)結(jié)合作的新篇章-2025年春季學(xué)期形勢(shì)與政策課件
- 菌群失衡與多囊卵巢綜合征痰濕證型生物學(xué)內(nèi)涵相關(guān)性研究進(jìn)展
- 2025年河南林業(yè)職業(yè)學(xué)院高職單招高職單招英語(yǔ)2016-2024歷年頻考點(diǎn)試題含答案解析
- 醫(yī)療機(jī)構(gòu)未成年人傷害事件強(qiáng)制報(bào)告制度
評(píng)論
0/150
提交評(píng)論