




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2022年普通高等學校招生全國統一考試數學(理科)參考答案注意事項:1答卷前,考生務必將自己的姓名和座位號填寫在答題卡上2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑.如需改動,用橡皮擦干凈后,再選涂其它答案標號.回答非選擇題時,將答案寫在答題卡上.寫在本試卷上無效3考試結束后,將本試卷和答題卡一并交回一、選擇題:本題共12小題,每小題5分,共60分在每小題給出的四個選項中,只有一項是符合題目要求的1. A 2. A 3. C. 4. D 5. B 6. B 7. A 8. D 9. C 10.D 11. C 12. D二、填空題:本題共4小題,每小題5分,共20分1
2、3. 14. 或或或;15. 16. 三、解答題:共0分解答應寫出文字說明、證明過程或演算步驟第1721題為必考題,每個試題考生都必須作答第22、23題為選考題,考生根據要求作答(一)必考題:共60分17. (1)證明:因為,所以,所以,即,所以;(2)解:因為,由(1)得,由余弦定理可得, 則,所以,故,所以,所以的周長為.18. (1)因為,E為的中點,所以;在和中,因為,所以,所以,又因為E為的中點,所以;又因為平面,所以平面,因為平面,所以平面平面.(2)連接,由(1)知,平面,因為平面,所以,所以,當時,最小,即的面積最小.因為,所以,又因為,所以是等邊三角形,因為E為的中點,所以,
3、因為,所以,在中,所以.以為坐標原點建立如圖所示的空間直角坐標系,則,所以,設平面的一個法向量為,則,取,則,又因為,所以,所以,設與平面所成的角的正弦值為,所以,所以與平面所成的角的正弦值為.19. (1)樣本中10棵這種樹木的根部橫截面積的平均值樣本中10棵這種樹木的材積量的平均值據此可估計該林區這種樹木平均一棵的根部橫截面積為,平均一棵的材積量為(2)則(3)設該林區這種樹木的總材積量的估計值為,又已知樹木的材積量與其根部橫截面積近似成正比,可得,解之得則該林區這種樹木的總材積量估計為20. (1)解:設橢圓E的方程為,過,則,解得,所以橢圓E的方程為:.(2),所以,若過點的直線斜率不
4、存在,直線.代入,可得,代入AB方程,可得,由得到.求得HN方程:,過點.若過點的直線斜率存在,設.聯立得,可得,且聯立可得可求得此時,將,代入整理得,將代入,得顯然成立,綜上,可得直線HN過定點21. (1)的定義域為當時,所以切點為,所以切線斜率為2所以曲線在點處的切線方程為(2)設若,當,即所以在上單調遞增,故在上沒有零點,不合題意若,當,則所以在上單調遞增所以,即所以在上單調遞增,故在上沒有零點,不合題意若(1)當,則,所以在上單調遞增所以存在,使得,即當單調遞減當單調遞增所以當當所以在上有唯一零點又沒有零點,即在上有唯一零點(2)當設所以在單調遞增所以存在,使得當單調遞減當單調遞增,又所以存在,使得,即當單調遞增,當單調遞減有而,所以當所以在上有唯一零點,上無零點即在上有唯一零點所以,符合題意所以若在區間各恰有一個零點,求的取值范圍為(二)選考題,共10分請考生在第22、23題中任選一題作答如果多做,則按所做的第一題計分選修4-4:坐標系與參數方程22. (1)因l:,所以,又因為,所以化簡為,整理得l的直角坐標方程:(2)聯立l與C的方程,即將,代入中,可得,所以,化簡為,要使l與C有公共點,則有解,令,則,令,對稱軸為,開口向上,所以,所以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論