




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、Kalman濾波在學習卡爾曼濾波器之前,首先看看為什么叫“卡爾曼”。跟其他著名的理論(例如傅立葉變換,泰勒級數等等)一樣,卡爾曼也是一個人的名字,而跟他們不同的是,他是個現代人!卡爾曼全名Rudolf Emil Kalman,匈牙利數學家,1930年出生于匈牙利首都布達佩斯。1953,1954年于麻省理工學院分別獲得電機工程學士及碩士學位。1957年于哥倫比亞大學獲得博士學位。我們現在要學習的卡爾曼濾波器,正是源于他的博士論文和1960年發表的論文A New Approach to Linear Filtering and Prediction Problems(線性濾波與預測問題的新方法)。
2、簡單來說,卡爾曼濾波器是一個“optimal recursive data processing algorithm(最優化自回歸數據處理算法)”。對于解決很大部分的問題,他是最優,效率最高甚至是最有用的。他的廣泛應用已經超過30年,包括機器人導航,控制,傳感器數據融合甚至在軍事方面的雷達系統以及導彈追蹤等等。近年來更被應用于計算機圖像處理,例如頭臉識別,圖像分割,圖像邊緣檢測等等。2卡爾曼濾波器的介紹(Introduction to the Kalman Filter)為了可以更加容易的理解卡爾曼濾波器,這里會應用形象的描述方法來講解,而不是像大多數參考書那樣羅列一大堆的數學公式和數學符號。
3、但是,他的5條公式是其核心內容。結合現代的計算機,其實卡爾曼的程序相當的簡單,只要你理解了他的那5條公式。在介紹他的5條公式之前,先讓我們來根據下面的例子一步一步的探索。假設我們要研究的對象是一個房間的溫度。根據你的經驗判斷,這個房間的溫度是恒定的,也就是下一分鐘的溫度等于現在這一分鐘的溫度(假設我們用一分鐘來做時間單位)。假設你對你的經驗不是100%的相信,可能會有上下偏差幾度。我們把這些偏差看成是高斯白噪聲(White Gaussian Noise),也就是這些偏差跟前后時間是沒有關系的而且符合高斯分配(Gaussian Distribution)。另外,我們在房間里放一個溫度計,但是這個
4、溫度計也不準確的,測量值會比實際值偏差。我們也把這些偏差看成是高斯白噪聲。好了,現在對于某一分鐘我們有兩個有關于該房間的溫度值:你根據經驗的預測值(系統的預測值)和溫度計的值(測量值)。下面我們要用這兩個值結合他們各自的噪聲來估算出房間的實際溫度值。假如我們要估算k時刻的是實際溫度值。首先你要根據k-1時刻的溫度值,來預測k時刻的溫度。因為你相信溫度是恒定的,所以你會得到k時刻的溫度預測值是跟k-1時刻一樣的,假設是23度,同時該值的高斯噪聲的偏差是5度(5是這樣得到的:如果k-1時刻估算出的最優溫度值的偏差是3,你對自己預測的不確定度是4度,他們平方相加再開方,就是5)。然后,你從溫度計那里
5、得到了k時刻的溫度值,假設是25度,同時該值的偏差是4度。由于我們用于估算k時刻的實際溫度有兩個溫度值,分別是23度和25度。究竟實際溫度是多少呢?相信自己還是相信溫度計呢?究竟相信誰多一點,我們可以用他們的covariance來判斷。因為Kg2=52/(52+42),所以Kg=0.78,我們可以估算出k時刻的實際溫度值是:23+0.78*(25-23)=24.56度。可以看出,因為溫度計的covariance比較小(比較相信溫度計),所以估算出的最優溫度值偏向溫度計的值。現在我們已經得到k時刻的最優溫度值了,下一步就是要進入k+1時刻,進行新的最優估算。到現在為止,好像還沒看到什么自回歸的東
6、西出現。對了,在進入k+1時刻之前,我們還要算出k時刻那個最優值(24.56度)的偏差。算法如下:(1-Kg)*52)0.5=2.35。這里的5就是上面的k時刻你預測的那個23度溫度值的偏差,得出的2.35就是進入k+1時刻以后k時刻估算出的最優溫度值的偏差(對應于上面的3)。就是這樣,卡爾曼濾波器就不斷的把covariance遞歸,從而估算出最優的溫度值。他運行的很快,而且它只保留了上一時刻的covariance。上面的Kg,就是卡爾曼增益(Kalman Gain)。他可以隨不同的時刻而改變他自己的值,是不是很神奇!下面就要言歸正傳,討論真正工程系統上的卡爾曼。3 卡爾曼濾波器算法(The
7、Kalman Filter Algorithm)在這一部分,我們就來描述源于Dr Kalman 的卡爾曼濾波器。下面的描述,會涉及一些基本的概念知識,包括概率(Probability),隨即變量(Random Variable),高斯或正態分配(Gaussian Distribution)還有State-space Model等等。但對于卡爾曼濾波器的詳細證明,這里不能一一描述。首先,我們先要引入一個離散控制過程的系統。該系統可用一個線性隨機微分方程(Linear Stochastic Difference equation)來描述:X(k)=A*X(k-1)+B*U(k)+W(k) 再加上系
8、統的測量值:Z(k)=H*X(k)+V(k) 上兩式子中,X(k)是k時刻的系統狀態,U(k)是k時刻對系統的控制量。A和B是系統參數,對于多模型系統,他們為矩陣。Z(k)是k時刻的測量值,H是測量系統的參數,對于多測量系統,H為矩陣。W(k)和V(k)分別表示過程和測量的噪聲。他們被假設成高斯白噪聲(White Gaussian Noise),他們的covariance 分別是Q,R(這里我們假設他們不隨系統狀態變化而變化)。對于滿足上面的條件(線性隨機微分系統,過程和測量都是高斯白噪聲),卡爾曼濾波器是最優的信息處理器。下面我們來用他們結合他們的covariances 來估算系統的最優化輸
9、出(類似上一節那個溫度的例子)。首先我們要利用系統的過程模型,來預測下一狀態的系統。假設現在的系統狀態是k,根據系統的模型,可以基于系統的上一狀態而預測出現在狀態:X(k|k-1)=A*X(k-1|k-1)+B*U(k) +W(k)(1)式(1)中,X(k|k-1)是利用上一狀態預測的結果,X(k-1|k-1)是上一狀態最優的結果,U(k)為現在狀態的控制量,如果沒有控制量,它可以為0。到現在為止,我們的系統結果已經更新了,可是,對應于X(k|k-1)的covariance還沒更新。我們用P表示covariance:P(k|k-1)=A P(k-1|k-1) A+Q (2)式(2)中,P(k|
10、k-1)是X(k|k-1)對應的covariance,P(k-1|k-1)是X(k-1|k-1)對應的covariance,A表示A的轉置矩陣,Q是系統過程的covariance。式子1,2就是卡爾曼濾波器5個公式當中的前兩個,也就是對系統的預測。現在我們有了現在狀態的預測結果,然后我們再收集現在狀態的測量值。結合預測值和測量值,我們可以得到現在狀態(k)的最優化估算值X(k|k):X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1) (3)其中,Kg為卡爾曼增益(Kalman Gain):Kg(k)= P(k|k-1) H / (H P(k|k-1) H + R)
11、(4)到現在為止,我們已經得到了k狀態下最優的估算值X(k|k)。但是為了要卡爾曼濾波器不斷的運行下去直到系統過程結束,我們還要更新k狀態下X(k|k)的covariance:P(k|k)=(I-Kg(k) H)P(k|k-1) (5)其中I 為1的矩陣,對于單模型單測量,I=1。當系統進入k+1狀態時,P(k|k)就是式子(2)的P(k-1|k-1)。這樣,算法就可以自回歸的運算下去。卡爾曼濾波器的原理基本描述了,式子1,2,3,4和5就是他的5 個基本公式。根據這5個公式,可以很容易的實現計算機的程序。下面,我會用程序舉一個實際運行的例子。4 簡單例子(A Simple Example)這
12、里我們結合第二第三節,舉一個非常簡單的例子來說明卡爾曼濾波器的工作過程。所舉的例子是進一步描述第二節的例子,而且還會配以程序模擬結果。根據第二節的描述,把房間看成一個系統,然后對這個系統建模。當然,我們見的模型不需要非常地精確。我們所知道的這個房間的溫度是跟前一時刻的溫度相同的,所以A=1。沒有控制量,所以U(k)=0。因此得出:X(k|k-1)=X(k-1|k-1) (6)式子(2)可以改成:P(k|k-1)=P(k-1|k-1) +Q (7)因為測量的值是溫度計的,跟溫度直接對應,所以H=1。式子3,4,5可以改成以下:X(k|k)= X(k|k-1)+Kg(k)*(Z(k)-X(k|k-
13、1) (8)Kg(k)= P(k|k-1)/(P(k|k-1)+R) (9)P(k|k)=(1-Kg(k))*P(k|k-1) (10)現在我們模擬一組測量值作為輸入。假設房間的真實溫度為25度,我模擬了200個測量值,這些測量值的平均值為25度,但是加入了標準偏差為幾度的高斯白噪聲(在圖中為藍線)。為了令卡爾曼濾波器開始工作,我們需要告訴卡爾曼兩個零時刻的初始值,是X(0|0)和P(0|0)。他們的值不用太在意,隨便給一個就可以了,因為隨著卡爾曼的工作,X會逐漸的收斂。但是對于P,一般不要取0,因為這樣可能會令卡爾曼完全相信你給定的X(0|0)是系統最優的,從而使算法不能收斂。我選了X(0|
14、0)=1度,P(0|0)=10。三、圖像算法實現今天主要是想通過Opencv實現Kalman濾波器來加什么理解的,看了很多前輩有關kalman濾波器有了更清晰的理解,總算是把Kalman濾波模型搞懂了,感謝tornadomeet的總結,那我就是把這些前輩的帖子做一個匯總提煉,希望可以使大家能夠更容易的理解Kalman濾波器如何使用。這里我也結合Opencv的自帶事例Kalman.cpp來講解一下,這樣可以做到變量的對應,以免給腦子整混亂了:首先對Kalman濾波器做個概括(對的改寫吧):就是在不考慮當前時刻觀測值(包括測量噪聲)的前提下,根據前一時刻的狀態值以運動模型為變換函數來預測當前時刻&
15、#160;的系統狀態值(加入了運動噪聲),同理得到先驗誤差協方差值。這兩個值就是我們的預測值,再根據當前時刻觀測值和當前時刻的預測觀測值來計算當前時刻系統的最優狀態值,并更新后驗誤差協方差值使得誤差協方差值不斷減小。這里需要特別要注意Kalman濾波中有兩個十分重要的模型即,運動模型和觀察模型,現在使用Kalman濾波做物體跟蹤很火,但是能不能使用最重要的就是運動模型的提取。這里以學習opencv自帶事例為模型來說下這里的運動模型和觀察模型。場景如圖所示,一個小車圍繞著一個圓形跑到行駛,我們假設小車是勻速行駛(這一過程會有一些波動)的,小車在任意時刻都有一個角度theta和角速度omiga,那
16、么我們通過觀察的方法來模擬小車的行駛,我們可以觀察的值只有theta。這樣我們就提取了運動模型和觀察模型: 在k時刻用X(k|k)0代表theta, X(k|k)1代表o
17、miga,z(k|k)0代表觀察的theta,因此得到:運動模型: 觀察模型: 在本事例中dt=1這里把Opencv實現Kalman濾波器的具體過程說一下:首先根據運動模型和觀察模型創建Kalman濾波模型 設置Kalman中的一些列矩陣,包括傳遞矩陣F(1 0 , dt 1),測量矩陣H
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《智謀物流管理》課件
- 鐵道機車專業教學鄭州鐵路單紹平35課件
- 鐵道機車專業教學鄭州鐵路張中央70課件
- 天津海運職業于禎妮GroupTouristsBoardin
- 鐵道概論授課崔桂蘭64課件
- 鐵路信號與通信設備接發列車工作90課件
- 中醫文獻課件
- 個人介紹課件
- 設備融資租賃合同樣本
- 多式聯運貨物運輸保險合同主要條款
- 通訊設備故障處理流程圖
- 湖南省煙草專賣局(公司)考試題庫2024
- 苗木采購投標方案
- 超高頻開關電源技術的前沿研究
- 特許經營管理手冊范本(餐飲)
- 計算機應用基礎-終結性考試試題國開要求
- 《安裝條》浙江省建筑設備安裝工程提高質量的若干意見
- 光伏支架及組件安裝施工方案(最終版)
- 04S520埋地塑料排水管道施工標準圖集OSOS
- 220KV輸電線路組塔施工方案
- 高中班級讀書活動方案
評論
0/150
提交評論