




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、精選優質文檔-傾情為你奉上代數部分第一章:實數基礎知識點:一、實數的分類:1、有理數:任何一個有理數總可以寫成的形式,其中p、q是互質的整數,這是有理數的重要特征。2、無理數:初中遇到的無理數有三種:開不盡的方根,如、;特定結構的不限環無限小數,如1.0001;特定意義的數,如、°等。3、判斷一個實數的數性不能僅憑表面上的感覺,往往要經過整理化簡后才下結論。二、實數中的幾個概念1、相反數:只有符號不同的兩個數叫做互為相反數。(1)實數a的相反數是 -a; (2)a和b互為相反數a+b=02、倒數:(1)實數a(a0)的倒數是;(2)a和b 互為倒數;(3)注意0沒有倒數3、絕對值:(
2、1)一個數a 的絕對值有以下三種情況:(2)實數的絕對值是一個非負數,從數軸上看,一個實數的絕對值,就是數軸上表示這個數的點到原點的距離。(3)去掉絕對值符號(化簡)必須要對絕對值符號里面的實數進行數性(正、負)確認,再去掉絕對值符號。4、n次方根(1)平方根,算術平方根:設a0,稱叫a的平方根,叫a的算術平方根。(2)正數的平方根有兩個,它們互為相反數;0的平方根是0;負數沒有平方根。(3)立方根:叫實數a的立方根。(4)一個正數有一個正的立方根;0的立方根是0;一個負數有一個負的立方根。三、實數與數軸1、數軸:規定了原點、正方向、單位長度的直線稱為數軸。 原點、正方向、單位長度是數軸的三要
3、素。2、 數軸上的點和實數的對應關系:數軸上的每一個點都表示一個實數,而每一個實數都可以用數軸上的唯一的點來表示。實數和數軸上的點是一一對應的關系。四、實數大小的比較1、在數軸上表示兩個數,右邊的數總比左邊的數大。2、正數大于0; 負數小于0; 正數大于一切負數;兩個負數絕對值大的反而小。五、實數的運算1、加法:(1)同號兩數相加,取原來的符號,并把它們的絕對值相加;(2)異號兩數相加,取絕對值大的加數的符號,并用較大的絕對值減去較小的絕對值。可使用加法交換律、結合律。2、減法: 減去一個數等于加上這個數的相反數。3、乘法:(1)兩數相乘,同號取正,異號取負,并把絕對值相乘。(2)n個實數相乘
4、,有一個因數為0,積就為0;若n個非0的實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數為奇數個時,積為負。(3)乘法可使用乘法交換律: 乘法結合律: 乘法分配律:4、除法:(1)兩數相除,同號得正,異號得負,并把絕對值相除。(2)除以一個數等于乘以這個數的倒數。(3)0除以任何數都等于0,0不能做被除數。5、乘方與開方:乘方與開方互為逆運算。6、實數的運算順序:乘方、開方為三級運算,乘、除為二級運算,加、減是一級運算,如果沒有括號,在同一級運算中要從左到右依次運算,不同級的運算,先算高級的運算再算低級的運算,有括號的先算括號里的運算。無論何種運算,都要注意先定符號后
5、運算。六、有效數字和科學記數法1、科學記數法:設N0,則N= a×(其中1a10,n為整數)。2、 有效數字:一個近似數,從左邊第一個不是0的數,到精確到的數位為止,所有的數字,叫做這個數的有效數字。精確度的形式有兩種:(1)精確到那一位;(2)保留幾個有效數字。代數部分第二章:代數式基礎知識點:一、代數式1、代數式:用運算符號把數或表示數的字母連結而成的式子,叫代數式。單獨一個數或者一個字母也是代數式。2、代數式的值:用數值代替代數里的字母,計算后得到的結果叫做代數式的值。3、代數式的分類:二、整式的有關概念及運算1、概念(1)單項式:像x、7、,這種數與字母的積叫做單項式。 單獨
6、一個數或字母也是單項式。單項式的次數:一個單項式中,所有字母的指數叫做這個單項式的次數。單項式的系數:單項式中的數字因數叫單項式的系數。(2)多項式:幾個單項式的和叫做多項式。多項式的項:多項式中每一個單項式都叫多項式的項。一個多項式含有幾項,就叫幾項式。多項式的次數:多項式里,次數最高的項的次數,就是這個多項式的次數。不含字母的項叫常數項。升(降)冪排列:把一個多項式按某一個字母的指數從小(大)到大(小)的順序排列起來,叫做把多項式按這個字母升(降)冪排列。 (3) 同類項:所含字母相同,并且相同字母的指數也分別相同的項叫做同類項。2、運算(1)整式的加減:合并同類項:把同類項的系數相加,所
7、得結果作為系數,字母及字母的指數不變。去括號法則:括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不變;括號前面是“”號,把括號和它前面的“”號去掉,括號里的各項都變號。添括號法則:括號前面是“+”號,括到括號里的各項都不變;括號前面是“”號,括到括號里的各項都變號。整式的加減實際上就是合并同類項,在運算時,如果遇到括號,先去括號,再合并同類項。 (2)整式的乘除: 冪的運算法則:其中m、n都是正整數同底數冪相乘:;同底數冪相除:;冪的乘方:積的乘方:。單項式乘以單項式:用它們系數的積作為積的系數,對于相同的字母,用它們的指數的和作為這個字母的指數;對于只在一個單項式里含有的字母
8、,則連同它的指數作為積的一個因式。單項式乘以多項式:就是用單項式去乘多項式的每一項,再把所得的積相加。多項式乘以多項式:先用一個多項式的每一項乘以另一個多項式的每一項,再把所得的積相加。單項除單項式:把系數,同底數冪分別相除,作為商的因式,對于只在被除式里含有字母,則連同它的指數作為商的一個因式。多項式除以單項式:把這個多項式的每一項除以這個單項,再把所得的商相加。 乘法公式: 平方差公式:;完全平方公式:,三、因式分解1、因式分解概念:把一個多項式化成幾個整式的積的形式,叫因式分解。 2、常用的因式分解方法: (1)提取公因式法: (2)運用公式法:平方差公式:;完全平方公式:(3) 十字相
9、乘法:(4) 分組分解法:將多項式的項適當分組后能提公因式或運用公式分解。(5)運用求根公式法:若的兩個根是、,則有:3、因式分解的一般步驟:(1)如果多項式的各項有公因式,那么先提公因式;(2)提出公因式或無公因式可提,再考慮可否運用公式或十字相乘法;(3)對二次三項式,應先嘗試用十字相乘法分解,不行的再用求根公式法。(4)最后考慮用分組分解法。四、分式 1、分式定義:形如的式子叫分式,其中A、B是整式,且B中含有字母。(1)分式無意義:B=0時,分式無意義; B0時,分式有意義。(2)分式的值為0:A=0,B0時,分式的值等于0。(3)分式的約分:把一個分式的分子與分母的公因式約去叫做分式
10、的約分。方法是把分子、分母因式分解,再約去公因式。(4)最簡分式:一個分式的分子與分母沒有公因式時,叫做最簡分式。分式運算的最終結果若是分式,一定要化為最簡分式。(5)通分:把幾個異分母的分式分別化成與原來分式相等的同分母分式的過程,叫做分式的通分。(6)最簡公分母:各分式的分母所有因式的最高次冪的積。(7)有理式:整式和分式統稱有理式。 2、分式的基本性質:(1) ;(2) (2)(3)分式的變號法則:分式的分子,分母與分式本身的符號,改變其中任何兩個,分式的值不變。 3、分式的運算:(1)加、減:同分母的分式相加減,分母不變,分子相加減;異分母的分式相加減,先把它們通分成同分母的分式再相加
11、減。(2)乘:先對各分式的分子、分母因式分解,約分后再分子乘以分子,分母乘以分母。(3)除:除以一個分式等于乘上它的倒數式。(4)乘方:分式的乘方就是把分子、分母分別乘方。五、二次根式 1、二次根式的概念:式子叫做二次根式。(1)最簡二次根式:被開方數的因數是整數,因式是整式,被開方數中不含能開得盡方的因式的二次根式叫最簡二次根式。(2)同類二次根式:化為最簡二次根式之后,被開方數相同的二次根式,叫做同類二次根式。(3)分母有理化:把分母中的根號化去叫做分母有理化。(4)有理化因式:把兩個含有二次根式的代數式相乘,如果它們的積不含有二次根式,我們就說這兩個代數式互為有理化因式(常用的有理化因式
12、有:與;與) 2、二次根式的性質: (1) ;(2) ;(3)(a0,b0);(4) 3、運算: (1)二次根式的加減:將各二次根式化為最簡二次根式后,合并同類二次根式。 (2)二次根式的乘法:(a0,b0)。 (3)二次根式的除法: 二次根式運算的最終結果如果是根式,要化成最簡二次根式。代數部分第三章:方程和方程組基礎知識點:一、方程有關概念 1、方程:含有未知數的等式叫做方程。 2、方程的解:使方程左右兩邊的值相等的未知數的值叫方程的解,含有一個未知數的方程的解也叫做方程的根。 3、解方程:求方程的解或方判斷方程無解的過程叫做解方程。 4、方程的增根:在方程變形時,產生的不適合原方程的根叫
13、做原方程的增根。 二、一元方程 1、一元一次方程(1)一元一次方程的標準形式:ax+b=0 (其中x是未知數,a、b是已知數,a0)(2)一元一次方程的最簡形式:ax=b (其中x是未知數,a、b是已知數,a0)(3)解一元一次方程的一般步驟: 去分母、 去括號、 移項、 合并同類項 系數化為1。(4)一元一次方程有唯一的一個解。 2、一元二次方程 (1)一元二次方程的一般形式:(其中x是未知數,a、b、c是已知數,a0) (2)一元二次方程的解法: 直接開平方法、配方法、公式法、因式分解法 (3)一元二次方程解法的選擇順序是:先特殊后一般,如沒有要求,一般不用配方法。 (4)一元二次方程的根
14、的判別式: 當0時方程有兩個不相等的實數根; 當=0時方程有兩個相等的實數根; 當< 0時方程沒有實數根,無解; 當0時方程有兩個實數根 (5)一元二次方程根與系數的關系: 若是一元二次方程的兩個根,那么:,(6)以兩個數為根的一元二次方程(二次項系數為1)是: 三、分式方程 (1)定義:分母中含有未知數的方程叫做分式方程。 (2)分式方程的解法: 一般解法:去分母法,方程兩邊都乘以最簡公分母。 特殊方法:換元法。(3)檢驗方法:一般把求得的未知數的值代入最簡公分母,使最簡公分母不為0的就是原方程的根;使得最簡公分母為0的就是原方程的增根,增根必須舍去,也可以把求得的未知數的值代入原方程
15、檢驗。 四、方程組 1、方程組的解:方程組中各方程的公共解叫做方程組的解。 2、解方程組:求方程組的解或判斷方程組無解的過程叫做解方程組 3、一次方程組: (1)二元一次方程組: 一般形式:(不全為0) 解法:代入消遠法和加減消元法 解的個數:有唯一的解,或無解,當兩個方程相同時有無數的解。 (2)三元一次方程組: 解法:代入消元法和加減消元法 4、二元二次方程組: (1)定義:由一個二元一次方程和一個二元二次方程組成的方程組以及由兩個二元二次方程組成的方程組叫做二元二次方程組。 (2)解法:消元,轉化為解一元二次方程,或者降次,轉化為二元一次方程組。代數部分第四章:列方程(組)解應用題知識點
16、:一、列方程(組)解應用題的一般步驟 1、審題: 2、設未知數; 3、找出相等關系,列方程(組); 4、解方程(組); 5、檢驗,作答; 二、列方程(組)解應用題常見類型題及其等量關系; 1、工程問題 (1)基本工作量的關系:工作量=工作效率×工作時間 (2)常見的等量關系:甲的工作量+乙的工作量=甲、乙合作的工作總量 (3)注意:工程問題常把總工程看作“1”,水池注水問題屬于工程問題 2、行程問題 (1)基本量之間的關系:路程=速度×時間 (2)常見等量關系: 相遇問題:甲走的路程+乙走的路程=全路程 追及問題(設甲速度快): 同時不同地:甲的時間=乙的時間;甲走的路程乙
17、走的路程=原來甲、乙相距路程 同地不同時:甲的時間=乙的時間時間差;甲的路程=乙的路程 3、水中航行問題:順流速度=船在靜水中的速度+水流速度;逆流速度=船在靜水中的速度水流速度4、增長率問題:常見等量關系:增長后的量=原來的量+增長的量;增長的量=原來的量×(1+增長率);5、數字問題:基本量之間的關系:三位數=個位上的數+十位上的數×10+百位上的數×100三、列方程解應用題的常用方法1、譯式法:就是將題目中的關鍵性語言或數量及各數量間的關系譯成代數式,然后根據代數之間的內在聯系找出等量關系。2、線示法:就是用同一直線上的線段表示應用題中的數量關系,然后根據線
18、段長度的內在聯系,找出等量關系。3、列表法:就是把已知條件和所求的未知量納入表格,從而找出各種量之間的關系。4、圖示法:就是利用圖表示題中的數量關系,它可以使量與量之間的關系更為直觀,這種方法能幫助我們更好地理解題意。例題: 例1、甲、乙兩組工人合作完成一項工程,合作5天后,甲組另有任務,由乙組再單獨工作1天就可完成,若單獨完成這項工程乙組比甲組多用2天,求甲、乙兩組單獨完成這項工程各需幾天?分析:設工作總量為1,設甲組單獨完成工程需要x天,則乙組完成工程需要(x+2)天,等量關系是甲組5天的工作量+乙組6天的工作量=工作總量 解:略例2、某部隊奉命派甲連跑步前往90千米外的A地,1小時45分
19、后,因任務需要,又增派乙連乘車前往支援,已知乙連比甲連每小時快28千米,恰好在全程的處追上甲連。求乙連的行進速度及追上甲連的時間分析:設乙連的速度為v千米/小時,追上甲連的時間為t小時,則甲連的速度為(v28)千米/小時,這時乙連行了小時,其等量關系為:甲走的路程=乙走的路程=30例3、某工廠原計劃在規定期限內生產通訊設備60臺支援抗洪,由于改進了操作技術;每天生產的臺數比原計劃多50%,結果提前2天完成任務,求改進操作技術后每天生產通訊設備多少臺?分析:設原計劃每天生產通訊設備x臺,則改進操作技術后每天生產x(1+0.5)臺,等量關系為:原計劃所用時間改進技術后所用時間=2天 解:略例4、某
20、商廈今年一月份銷售額為60萬元,二月份由于種種原因,經營不善,銷售額下降10%,以后經加強管理,又使月銷售額上升,到四月份銷售額增加到96萬元,求三、四月份平均每月增長的百分率是多少?分析:設三、四月份平均每月增長率為x%,二月份的銷售額為60(110%)萬元,三月份的銷售額為二月份的(1+x)倍,四月份的銷售額又是三月份的(1+x)倍,所以四月份的銷售額為二月份的(1+x)2倍,等量關系為:四月份銷售額為=96萬元。解:略例5、一年期定期儲蓄年利率為2.25%,所得利息要交納20%的利息稅,例如存入一年期100元,到期儲戶納稅后所得到利息的計算公式為:稅后利息=已知某儲戶存下一筆一年期定期儲
21、蓄到期納稅后得到利息是450元,問該儲戶存入了多少本金?分析:設存入x元本金,則一年期定期儲蓄到期納稅后利息為2.25%(1-20%)x元,方程容易得出。 例6、某商場銷售一批名牌襯衫,平均每天售出20件,每件盈利40元,為了擴大銷售,增加盈利,減少庫存,商場決定采取適當的降低成本措施,經調查發現,如果每件襯衫每降價1元,商場平均每天可多售出2件。若商場平均每天要盈利1200元,每件襯衫應降價多少元? 分析:設每件襯衫應該降價x元,則每件襯衫的利潤為(40-x)元,平均每天的銷售量為(20+2x)件,由關系式:總利潤=每件的利潤×售出商品的叫量,可列出方程 解:略代數部分第五章:不等式及不等式組知識點:一、不等式與不等式的性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 伊春市新青區2025屆數學五下期末考試模擬試題含答案
- 貨物買賣合同協議書范本
- 2025年度個人股權融資合同樣本
- 智慧農業農業物聯網技術革新與實踐
- 智慧農業技術創新與人才培養策略
- 企業法律顧問服務合同示范文本
- 連鎖藥房加盟經營合同
- 軟件公司與程序員勞動合同
- 房產抵債合同范文
- 2024-2025年濟南天橋區濼口實驗學校第二學期七年級地理期中考試試題(含答案)
- 冠心病中西醫結合治療
- 腰椎人工椎體置換術
- 綜合一體化指揮調度解決方案
- 家長會課件:七年級家長會班主任優質課件
- 人工智能導論智慧樹知到課后章節答案2023年下哈爾濱工程大學
- 腦中風病人病情觀察
- 第14課 背影 課件(共26張ppt)
- 汽車維修工(三級)技能理論考試題庫(濃縮300題)
- 石景山區行政事業單位資產清查業務培訓
- 《今天怎樣做教師-點評100個教育案例》讀書分享會PPT模板
- 高效節水灌溉技術與灌溉排水工程設計及案例分析
評論
0/150
提交評論