




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、精選優質文檔-傾情為你奉上必修二直線與方程專題講義1、直線的傾斜角與斜率(1)直線的傾斜角1 關于傾斜角的概念要抓住三點:.與x軸相交; .x軸正向; .直線向上方向.2 直線與x軸平行或重合時,規定它的傾斜角為.3 傾斜角的范圍.4 ; (2)直線的斜率直線的斜率就是直線傾斜角的正切值,而傾斜角為的直線斜率不存在.經過兩點的直線的斜率公式是.每條直線都有傾斜角,但并不是每條直線都有斜率.2、直線方程的幾種形式名稱方程的形式已知條件局限性點斜式為直線上一定點,為斜率不包括垂直于x軸的直線斜截式為斜率,是直線在y軸上的截距不包括垂直于x軸的直線兩點式是直線上兩定點不包括垂直于x軸和y軸的直線截距
2、式是直線在x軸上的非零截距,是直線在y軸上的非零截距不包括垂直于x軸和y軸或過原點的直線一般式,為系數無限制,可表示任何位置的直線注:過兩點的直線是否一定可用兩點式方程表示?(不一定)(1)若,直線垂直于x軸,方程為;(2) 若,直線垂直于y軸,方程為;(3) 若,直線方程可用兩點式表示)3、兩條直線平行與垂直的判定(1) 兩條直線平行斜截式:對于兩條不重合的直線,則有注:當直線的斜率都不存在時,的關系為平行.一般式:已知 , ,則注:與相交(2)兩條直線垂直斜截式:如果兩條直線斜率存在,設為,則注:兩條直線垂直的充要條件是斜率之積為-1,這句話不正確;由兩直線的斜率之積為-1,可以得出兩直線
3、垂直,反過來,兩直線垂直,斜率之積不一定為-1.如果中有一條直線的斜率不存在,另一條直線的斜率為0時,互相垂直.一般式:已知 , ,則4、線段的中點坐標公式若兩點,且線段的中點的坐標為,則5、 直線系方程(1)過定點的直線系斜率為且過定點的直線系方程為過兩條直線, 的交點的直線系方程為(為參數),其中直線l2不在直線系中(2)平行垂直直線系平行于已知直線的直線系垂直于已知直線的直線系6、兩條直線的交點設兩條直線的方程是, 兩條直線的交點坐標就是方程組的解,若方程組有唯一解,則這兩條直線相交,此解就是交點的坐標;若方程組無解,則兩條直線無公共點,此時兩條直線平行;反之,亦成立.7、幾種距離(1)
4、兩點間的距離平面上的兩點間的距離公式特別地,原點與任一點的距離(2)點到直線的距離點到直線的距離(3)兩條平行線間的距離 兩條平行線, 間的距離注:求點到直線的距離時,直線方程要化為一般式;求兩條平行線間的距離時,必須將兩直線方程化為系數相同的一般形式后,才能套用公式計算.8、有關對稱問題(1)中心對稱若點及關于對稱,則由中點坐標公式得直線關于點的對稱,其主要方法是:在已知直線上取兩點,利用中點坐標公式求出它們關于已知點對稱的兩點坐標,再由兩點式求出直線方程,或者求出一個對稱點,再利用,由點斜式得到所求直線方程.(2)軸對稱點關于直線的對稱若兩點與關于直線對稱,則線段的中點在對稱軸上,而且連接
5、的直線垂直于對稱軸上,由方程組?可得到點關于對稱的點的坐標(其中)直線關于直線的對稱此類問題一般轉化為點關于直線的對稱來解決,有兩種情況:一是已知直線與對稱軸相交;二是已知直線與對稱軸平行.注:曲線、直線關于一直線對稱的解法:換,換. 例:曲線關于直線對稱曲線方程是 曲線關于點的對稱曲線方程是9、直線上一動點P到兩個定點A、B的距離“最值問題”:(1)在直線上求一點P,使取得最小值,1 若點位于直線的同側時,作點(或點)關于的對稱點或, 2 若點位于直線的異側時,連接交于點,則為所求點.可簡記為“同側對稱異側連”.即兩點位于直線的同側時,作其中一個點的對稱點;兩點位于直線的異側時,直接連接兩點即可.(2)在直線上求一點使取得最大值,方法與(1)恰好相反,即“異側對稱同側連”1 若點位于直線的同側時,連接交于點,則為所求點.2 若點位于直線的異側時,作點(或點)關于的對稱點或, (3) 的最值:函數思想“轉換成
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025原單位倒閉如何解除勞動合同
- 羽毛球教學與實戰知到課后答案智慧樹章節測試答案2025年春阜陽師范大學
- 畢業設計與研究成果展示
- 2025建筑工程與城市基礎設施項目施工總承栽合同
- 2025年碳纖維傳動離合器采購合同
- 高一英語學案:知識巧學Womenofachievement
- 2024年西安長安聶河中醫醫院招聘真題
- 2024年四川師范大學附屬高新菁蓉小學招聘儲備教師筆試真題
- 2025勞動合同終止協議書樣本
- 襯衫購買合同范本模板
- 2024浙江省嘉興市中考初三二模英語試題及答案
- 大連市2023-2024學年七年級下學期語文試題【帶答案】
- 養老機構老年人保護性約束服務規范 編制說明
- 肥胖癥治療季度臨床路徑分析
- 《習作:心愿》課件(兩套)
- 針灸筆記課件
- 《蜀相》76816省公開課一等獎全國示范課微課金獎課件
- 幼兒園大班繪本閱讀教學現狀與對策研究
- 隧道工程畢業設計
- 期中句型轉換練習專項過關卷(試題)-2023-2024學年譯林版(三起)英語四年級下冊
- 2024年杭州市水務集團有限公司招聘筆試參考題庫附帶答案詳解
評論
0/150
提交評論