高考數(shù)學(xué)復(fù)習(xí)點(diǎn)撥-如何確定離散型隨機(jī)變量的分布列_第1頁
高考數(shù)學(xué)復(fù)習(xí)點(diǎn)撥-如何確定離散型隨機(jī)變量的分布列_第2頁
高考數(shù)學(xué)復(fù)習(xí)點(diǎn)撥-如何確定離散型隨機(jī)變量的分布列_第3頁
高考數(shù)學(xué)復(fù)習(xí)點(diǎn)撥-如何確定離散型隨機(jī)變量的分布列_第4頁
高考數(shù)學(xué)復(fù)習(xí)點(diǎn)撥-如何確定離散型隨機(jī)變量的分布列_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、如何確定離散型隨機(jī)變量的分布列一.求離散型隨機(jī)變量的分布列的步驟 求離散型隨機(jī)變量的分布列,首先要根據(jù)具體情況確定的取值情況,然后利用排列、組合與概率知識(shí)求出取各個(gè)值的概率 即必須解決好兩個(gè)問題:一是求出的所有取值;二是求出取每一個(gè)值時(shí)的概率.求離散型隨機(jī)變量的分布列應(yīng)按下述三個(gè)步驟進(jìn)行:明確隨機(jī)變量的所有可能取值,以及取每個(gè)值所表示的意義;利用概率的有關(guān)知識(shí),求出隨機(jī)變量每個(gè)取值的概率;按規(guī)范形式寫出分布列,并注意用分布列的兩條性質(zhì)檢驗(yàn)所求的分布列或某事件的概率是否正確. 二. 對(duì)離散型隨機(jī)變量的分布列的幾個(gè)特性的認(rèn)識(shí)1.離散型隨機(jī)變量的概率分布的兩個(gè)本質(zhì)特征:,n)與pi=1是確定分布列中

2、參數(shù)值的依據(jù).2.離散型隨機(jī)變量在某一范圍內(nèi)取值的概率等于它取這個(gè)范圍內(nèi)各個(gè)值的概率之和。3.處理有關(guān)離散型隨機(jī)變量的應(yīng)用問題,關(guān)鍵在于根據(jù)實(shí)際問題確定恰當(dāng)?shù)碾S機(jī)變量。4.求一些離散型隨機(jī)變量的分布列,在某種程度上就是正確地求出相應(yīng)的事件個(gè)數(shù),即相應(yīng)的排列組合數(shù),所以學(xué)好排列組合是學(xué)好分布列的基礎(chǔ)與前提. 三. 題型分析與講解 例1.在10件產(chǎn)品中有2件次品,連續(xù)抽3次,每次抽1件,求:(1)不放回抽樣時(shí),抽到次品數(shù)的分布列;(2)放回抽樣時(shí),抽到次品數(shù)的分布列。分析:隨機(jī)變量可以取0,1,2,也可以取0,1,2,3,放回抽樣和不放回抽樣對(duì)隨機(jī)變量的取值和相應(yīng)的概率都產(chǎn)生了變化,要具體問題具體

3、分析。解:(1)=, ,所以的分布列為012P(2)(k=0,1,2,3),所以的分布列為0123P點(diǎn)評(píng):求離散型隨機(jī)變量分布列要注意兩個(gè)問題:一是求出隨機(jī)變量所有可能的值;二是求出取每一個(gè)值時(shí)的概率。 放回抽樣時(shí),抽到的次品數(shù)為獨(dú)立重復(fù)試驗(yàn)事件,即B(3,08)例2.一袋中裝有5只球,編號(hào)為1,2,3,4,5,在袋中同時(shí)取3只,以表示取出的三只球中的最小號(hào)碼,寫出隨機(jī)變量的分布列。分析:因?yàn)樵诰幪?hào)為1,2,3,4,5的球中,同時(shí)取3只,所以小號(hào)碼可能是1或2或3,即可以取1,2,3。解:隨機(jī)變量的可能取值為1,2,3。當(dāng)=1時(shí),即取出的三只球中最小號(hào)碼為1,則其他兩只球只能在編號(hào)為2,3,4

4、,5的四只球中任取兩只,故有P(=1)=;當(dāng)=2時(shí),即取出的三只球中最小號(hào)碼為2,則其他兩只球只能在編號(hào)為3,4,5的三只球中任取兩只,故有P(=2)=;當(dāng)=3時(shí),即取出的三只球中最小號(hào)碼為3,則其他兩只球只能在編號(hào)為4,5的兩只球中任取兩只,故有P(=3)=。因此,的分布列如下表所示:123P點(diǎn)評(píng):求隨機(jī)變量的分布列,重要的基礎(chǔ)是概率的計(jì)算,如古典概率、互斥事件的概率、相互獨(dú)立事件同時(shí)發(fā)生的概率、n次獨(dú)立重復(fù)試驗(yàn)有k次發(fā)生的概率等。本題中基本事件總數(shù),即n=C,取每一個(gè)球的概率都屬古典概率(等可能性事件的概率)。例3.已知盒中有10個(gè)燈泡,其中8個(gè)正品,2個(gè)次品。需要從中取出2個(gè)正品,每次取

5、出1個(gè),取出后不放回,直到取出2個(gè)正品為止。設(shè)為取出的次數(shù),求的分布列.分析:每次取1件產(chǎn)品,至少需2次,即最小為2,有2件次品,當(dāng)前2次取得的都是次品時(shí),=4,所以可以取2,3,4。解:P(=2)=×=;P(=3)=××+××=;P(=4)=1=。的分布列如下:234P點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列的概念,考查運(yùn)用概率知識(shí)解決實(shí)際問題的能力.例4.盒中裝有一打(12個(gè))乒乓球,其中9個(gè)新的,3個(gè)舊的(用過的球即為舊的),從盒中任取3個(gè)使用,用完后裝回盒中,此時(shí)盒中舊球個(gè)數(shù)是一個(gè)隨機(jī)變量,求的分布列。分析:從盒中任取3個(gè),這3個(gè)可能全是舊的,2個(gè)舊的1個(gè)新的,1個(gè)舊的2個(gè)新的或全是新的,所以用完放回盒中,盒中舊球個(gè)數(shù)可能是3個(gè),4個(gè),5個(gè),6個(gè),即可以取3,4,5,6。解:的所有可能取值為3,4,5,6。P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論