




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省射洪縣2024-2025學年初三下學期第一次聯合模擬考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,AD,CE分別是△ABC的中線和角平分線.若AB=AC,∠CAD=20°,則∠ACE的度數是()A.20° B.35° C.40° D.70°2.二次函數的圖象如圖所示,則反比例函數與一次函數在同一坐標系中的大致圖象是()A. B. C. D.3.下列各式計算正確的是()A.a4?a3=a12 B.3a?4a=12a C.(a3)4=a12 D.a12÷a3=a44.已知△ABC,D是AC上一點,尺規在AB上確定一點E,使△ADE∽△ABC,則符合要求的作圖痕跡是()A. B.C. D.5.下列事件中,屬于不確定事件的是()A.科學實驗,前100次實驗都失敗了,第101次實驗會成功B.投擲一枚骰子,朝上面出現的點數是7點C.太陽從西邊升起來了D.用長度分別是3cm,4cm,5cm的細木條首尾順次相連可組成一個直角三角形6.在數軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.7.如圖,△ABC中,D、E分別為AB、AC的中點,已知△ADE的面積為1,那么△ABC的面積是()A.2 B.3 C.4 D.58.比較4,,的大小,正確的是()A.4<< B.4<<C.<4< D.<<49.如圖,在下列條件中,不能判定直線a與b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°10.填在下面各正方形中的四個數之間都有相同的規律,根據這種規律,m的值應是()A.110 B.158 C.168 D.178二、填空題(本大題共6個小題,每小題3分,共18分)11.某菜農搭建了一個橫截面為拋物線的大棚,尺寸如圖,若菜農身高為1.8m,他在不彎腰的情況下,在棚內的橫向活動范圍是__m.12.方程組的解是________.13.已知點A,B的坐標分別為(﹣2,3)、(1,﹣2),將線段AB平移,得到線段A′B′,其中點A與點A′對應,點B與點B′對應,若點A′的坐標為(2,﹣3),則點B′的坐標為________.14.如圖,在中,,,為邊的高,點在軸上,點在軸上,點在第一象限,若從原點出發,沿軸向右以每秒1個單位長的速度運動,則點隨之沿軸下滑,并帶動在平面內滑動,設運動時間為秒,當到達原點時停止運動連接,線段的長隨的變化而變化,當最大時,______.當的邊與坐標軸平行時,______.15.函數y=中,自變量x的取值范圍是_________.16.在正方形中,,點在對角線上運動,連接,過點作,交直線于點(點不與點重合),連接,設,,則和之間的關系是__________(用含的代數式表示).三、解答題(共8題,共72分)17.(8分)如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數量關系,并說明理由:(3)拓展與運用:正方形CEGF在旋轉過程中,當B,E,F三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC=.18.(8分)先化簡,再求值:,其中x=﹣1.19.(8分)先化簡,再求值:,其中x=-520.(8分)如圖,在平面直角坐標系中,直線y1=2x﹣2與雙曲線y2=交于A、C兩點,AB⊥OA交x軸于點B,且OA=AB.求雙曲線的解析式;求點C的坐標,并直接寫出y1<y2時x的取值范圍.21.(8分)(1)解方程:x2﹣5x﹣6=0;(2)解不等式組:.22.(10分)如圖,在一條河的北岸有兩個目標M、N,現在位于它的對岸設定兩個觀測點A、B.已知AB∥MN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.(1)求點M到AB的距離;(結果保留根號)(2)在B點又測得∠NBA=53°,求MN的長.(結果精確到1米)(參考數據:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)23.(12分)近幾年購物的支付方式日益增多,某數學興趣小組就此進行了抽樣調查.調查結果顯示,支付方式有:A微信、B支付寶、C現金、D其他,該小組對某超市一天內購買者的支付方式進行調查統計,得到如下兩幅不完整的統計圖.請你根據統計圖提供的信息,解答下列問題:本次一共調查了多少名購買者?請補全條形統計圖;在扇形統計圖中A種支付方式所對應的圓心角為度.若該超市這一周內有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?24.2013年6月,某中學結合廣西中小學閱讀素養評估活動,以“我最喜愛的書籍”為主題,對學生最喜愛的一種書籍類型進行隨機抽樣調查,收集整理數據后,繪制出以下兩幅未完成的統計圖,請根據圖1和圖2提供的信息,解答下列問題:在這次抽樣調查中,一共調查了多少名學生?請把折線統計圖(圖1)補充完整;求出扇形統計圖(圖2)中,體育部分所對應的圓心角的度數;如果這所中學共有學生1800名,那么請你估計最喜愛科普類書籍的學生人數.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
先根據等腰三角形的性質以及三角形內角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分線定義即可得出∠ACE=∠ACB=35°.【詳解】∵AD是△ABC的中線,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分線,∴∠ACE=∠ACB=35°.故選B.本題考查了等腰三角形的兩個底角相等的性質,等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合的性質,三角形內角和定理以及角平分線定義,求出∠ACB=70°是解題的關鍵.2、D【解析】
根據拋物線和直線的關系分析.【詳解】由拋物線圖像可知,所以反比例函數應在二、四象限,一次函數過原點,應在二、四象限.故選D考核知識點:反比例函數圖象.3、C【解析】
根據同底數冪的乘法,可判斷A、B,根據冪的乘方,可判斷C,根據同底數冪的除法,可判斷D.【詳解】A.a4?a3=a7,故A錯誤;B.3a?4a=12a2,故B錯誤;C.(a3)4=a12,故C正確;D.a12÷a3=a9,故D錯誤.故選C.本題考查了同底數冪的除法,同底數冪的除法底數不變指數相減是解題的關鍵.4、A【解析】
以DA為邊、點D為頂點在△ABC內部作一個角等于∠B,角的另一邊與AB的交點即為所求作的點.【詳解】如圖,點E即為所求作的點.故選:A.本題主要考查作圖-相似變換,根據相似三角形的判定明確過點D作一角等于∠B或∠C,并熟練掌握做一個角等于已知角的作法式解題的關鍵.5、A【解析】
根據事件發生的可能性大小判斷相應事件的類型即可.【詳解】解:A、是隨機事件,故A符合題意;B、是不可能事件,故B不符合題意;C、是不可能事件,故C不符合題意;D、是必然事件,故D不符合題意;故選A.本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件,不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.6、A【解析】根據解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數化為1可得不等式解集,然后得出在數軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項得:2x>﹣2,系數化為1得:x>﹣1,故選A.“點睛”本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數不等號方向要改變.7、C【解析】
根據三角形的中位線定理可得DE∥BC,=,即可證得△ADE∽△ABC,根據相似三角形面積的比等于相似比的平方可得=,已知△ADE的面積為1,即可求得S△ABC=1.【詳解】∵D、E分別是AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,=,∴△ADE∽△ABC,∴=()2=,∵△ADE的面積為1,∴S△ABC=1.故選C.本題考查了三角形的中位線定理及相似三角形的判定與性質,先證得△ADE∽△ABC,根據相似三角形面積的比等于相似比的平方得到=是解決問題的關鍵.8、C【解析】
根據4=<且4=>進行比較【詳解】解:易得:4=<且4=>,所以<4<故選C.本題主要考查開平方開立方運算。9、C【解析】
解:A.∵∠1與∠2是直線a,b被c所截的一組同位角,∴∠1=∠2,可以得到a∥b,∴不符合題意B.∵∠2與∠3是直線a,b被c所截的一組內錯角,∴∠2=∠3,可以得到a∥b,∴不符合題意,C.∵∠3與∠5既不是直線a,b被任何一條直線所截的一組同位角,內錯角,∴∠3=∠5,不能得到a∥b,∴符合題意,D.∵∠3與∠4是直線a,b被c所截的一組同旁內角,∴∠3+∠4=180°,可以得到a∥b,∴不符合題意,故選C.本題考查平行線的判定,難度不大.10、B【解析】根據排列規律,10下面的數是12,10右面的數是14,∵8=2×4?0,22=4×6?2,44=6×8?4,∴m=12×14?10=158.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
設拋物線的解析式為:y=ax2+b,由圖得知點(0,2.4),(1,0)在拋物線上,列方程組得到拋物線的解析式為:y=﹣x2+2.4,根據題意求出y=1.8時x的值,進而求出答案;【詳解】設拋物線的解析式為:y=ax2+b,由圖得知:點(0,2.4),(1,0)在拋物線上,∴,解得:,∴拋物線的解析式為:y=﹣x2+2.4,∵菜農的身高為1.8m,即y=1.8,則1.8=﹣x2+2.4,解得:x=(負值舍去)故他在不彎腰的情況下,橫向活動范圍是:1米,故答案為1.12、【解析】
利用加減消元法進行消元求解即可【詳解】解:由①+②,得3x=6x=2把x=2代入①,得2+3y=5y=1所以原方程組的解為:故答案為:本題考查了二元一次方程組的解法,用適當的方法解二元一次方程組是解題的關鍵.13、(5,﹣8)【解析】
各對應點之間的關系是橫坐標加4,縱坐標減6,那么讓點B的橫坐標加4,縱坐標減6即為點B′的坐標.【詳解】由A(-2,3)的對應點A′的坐標為(2,-13),坐標的變化規律可知:各對應點之間的關系是橫坐標加4,縱坐標減6,∴點B′的橫坐標為1+4=5;縱坐標為-2-6=-8;即所求點B′的坐標為(5,-8).故答案為(5,-8)此題主要考查了坐標與圖形的變化-平移,解決本題的關鍵是根據已知對應點找到各對應點之間的變化規律.14、4【解析】
(1)由等腰三角形的性質可得AD=BD,從而可求出OD=4,然后根據當O,D,C共線時,OC取最大值求解即可;(2)根據等腰三角形的性質求出CD,分AC∥y軸、BC∥x軸兩種情況,根據相似三角形的判定定理和性質定理列式計算即可.【詳解】(1),,當O,D,C共線時,OC取最大值,此時OD⊥AB.∵,∴△AOB為等腰直角三角形,∴;(2)∵BC=AC,CD為AB邊的高,∴∠ADC=90°,BD=DA=AB=4,∴CD==3,當AC∥y軸時,∠ABO=∠CAB,∴Rt△ABO∽Rt△CAD,∴,即,解得,t=,當BC∥x軸時,∠BAO=∠CBD,∴Rt△ABO∽Rt△BCD,∴,即,解得,t=,
則當t=或時,△ABC的邊與坐標軸平行.
故答案為t=或.本題考查的是直角三角形的性質,等腰三角形的性質,相似三角形的判定和性質,掌握相似三角形的判定定理和性質定理、靈活運用分情況討論思想是解題的關鍵.15、x≤1且x≠﹣1【解析】
由二次根式中被開方數為非負數且分母不等于零求解可得結論.【詳解】根據題意,得:,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.本題考查了函數自變量的取值范圍,函數自變量的范圍一般從三個方面考慮:(1)當函數表達式是整式時,自變量可取全體實數;(1)當函數表達式是分式時,考慮分式的分母不能為0;(3)當函數表達式是二次根式時,被開方數非負.16、或【解析】
當F在邊AB上時,如圖1作輔助線,先證明≌,得,,根據正切的定義表示即可;當F在BA的延長線上時,如圖2,同理可得:≌,表示AF的長,同理可得結論.【詳解】解:分兩種情況:
當F在邊AB上時,如圖1,
過E作,交AB于G,交DC于H,
四邊形ABCD是正方形,
,,,
,,
,
,
≌,
,
,
,
中,,
即;
當F在BA的延長線上時,如圖2,
同理可得:≌,
,
,
,
中,.本題考查了正方形的性質、三角形全等的性質和判定、三角函數等知識,熟練掌握正方形中輔助線的作法是關鍵,并注意F在直線AB上,分類討論.三、解答題(共8題,共72分)17、(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數量關系為AG=BE;(3)3【解析】
(1)①由、結合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質知、,據此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設,知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉性質知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數量關系為AG=BE;(3)∵∠CEF=45°,點B、E、F三點共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案為3.本題考查了正方形的性質與判定,相似三角形的判定與性質等,綜合性較強,有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質、相似三角形的判定與性質是解題的關鍵.18、-2.【解析】
根據分式的運算法化解即可求出答案.【詳解】解:原式=,當x=﹣1時,原式=.熟練運用分式的運算法則.19、,-【解析】分析:首先把括號里的式子進行通分,然后把除法運算轉化成乘法運算,進行約分化簡,最后代值計算.詳解:.當時,原式.點睛:本題主要考查分式的混合運算,注意運算順序,并熟練掌握同分、因式分解、約分等知識點.20、(1);(1)C(﹣1,﹣4),x的取值范圍是x<﹣1或0<x<1.【解析】【分析】(1)作高線AC,根據等腰直角三角形的性質和點A的坐標的特點得:x=1x﹣1,可得A的坐標,從而得雙曲線的解析式;(1)聯立一次函數和反比例函數解析式得方程組,解方程組可得點C的坐標,根據圖象可得結論.【詳解】(1)∵點A在直線y1=1x﹣1上,∴設A(x,1x﹣1),過A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴;(1)∵,解得:,,∴C(﹣1,﹣4),由圖象得:y1<y1時x的取值范圍是x<﹣1或0<x<1.【點睛】本題考查了反比例函數和一次函數的綜合;熟練掌握通過求點的坐標進一步求函數解析式的方法;通過觀察圖象,從交點看起,函數圖象在上方的函數值大.21、(1)x1=6,x2=﹣1;(2)﹣1≤x<1.【解析】
(1)先分解因式,即可得出兩個一元一次方程,求出方程的解即可;(2)先求出不等式的解集,再求出不等式組的解集即可.【詳解】(1)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,x﹣6=0,x+1=0,x1=6,x2=﹣1;(2)∵解不等式①得:x≥﹣1,解不等式②得:x<1,∴不等式組的解集為﹣1≤x<1.本題考查了解一元一次不等式組和解一元二次方程,能把一元二次方程轉化成一元一次方程是解(1)的關鍵,能根據不等式的解集找出不等式組的解集是解(2)的關鍵.22、(1);(2)95m.【解析】
(1)過點M作MD⊥AB于點D,易求AD的長,再由BD=MD可得BD的長,即M到AB的距離;
(2)過點N作NE⊥AB于點E,易證四邊形MDEN為平行四邊形,所以ME的長可求出,再根據MN=AB-AD-BE計算即可.【詳解】解:(1)過點M作MD⊥AB于點D,∵MD⊥AB,∴∠MDA=∠MDB=90°,∵∠MAB=60°,∠MBA=45°,∴在Rt△ADM中,;在Rt△BDM中,,∴BD=MD=,∵AB=600m,∴AD+BD=600m,∴AD+,∴AD=(300)m,∴BD=MD=(900-300),∴點M到AB的距離(900-300).(2)過點N作NE⊥AB于點E,∵MD⊥AB,NE⊥AB,∴MD∥NE,∵AB∥MN,∴四邊形MDEN為平行四邊形,∴NE=MD=(900-300),MN=DE,∵∠NBA=53°,∴在Rt△NEB中,,∴BEm,∴MN=AB-AD-BE.考查了解直角三角形的應用,通過解直角三角形能解決實際問題中的很多有關測量問題,根據題目已
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 5-12序列信號發生器2-m序列信號發生器的分析
- 1-7碼制-BCD的加減法運算
- 2025年北京海淀區中考一模英語試卷試題(含答案詳解)
- 食品企業產品檢驗管理制度
- 上海行健職業學院《創新創業基礎(社會實踐)》2023-2024學年第二學期期末試卷
- 天津渤海職業技術學院《能源與環境》2023-2024學年第二學期期末試卷
- 國開2025年《漢語通論》形成性考核1-4答案
- 江蘇省無錫江陰市要塞片2025屆初三第一次模擬(5月)物理試題含解析
- 江漢大學《試驗設計方法》2023-2024學年第一學期期末試卷
- 唐山幼兒師范高等專科學校《組織行為學與企業社會責任》2023-2024學年第二學期期末試卷
- 《再別康橋》 統編版高中語文選擇性必修下冊
- 2024年鄭州鐵路職業技術學院單招職業適應性測試題庫必考題
- 廣東省汕頭市金平區2023-2024學年九年級下學期一模英語試卷
- 預制箱梁施工質量保證措施
- 建筑防水工程技術規程DBJ-T 15-19-2020
- 生產節拍計算表格
- 光伏項目節前安全教育
- 中職學校高二上學期期末考試語文試題(含答案)
- 胰腺炎的中醫特色護理
- 疼痛病人護理
- 【基于渠道視角的海爾智家營運資金管理分析10000字(論文)】
評論
0/150
提交評論