江西省贛州市重點中學2025屆高三一輪復習:三角函數與解三角形檢測試題含解析_第1頁
江西省贛州市重點中學2025屆高三一輪復習:三角函數與解三角形檢測試題含解析_第2頁
江西省贛州市重點中學2025屆高三一輪復習:三角函數與解三角形檢測試題含解析_第3頁
江西省贛州市重點中學2025屆高三一輪復習:三角函數與解三角形檢測試題含解析_第4頁
江西省贛州市重點中學2025屆高三一輪復習:三角函數與解三角形檢測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江西省贛州市重點中學2025屆高三一輪復習:三角函數與解三角形檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列滿足,(),則數列的通項公式()A. B. C. D.2.年部分省市將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B.C. D.3.已知是定義是上的奇函數,滿足,當時,,則函數在區間上的零點個數是()A.3 B.5 C.7 D.94.已知函數,且的圖象經過第一、二、四象限,則,,的大小關系為()A. B.C. D.5.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發現三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路6.某三棱錐的三視圖如圖所示,網格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.7.半徑為2的球內有一個內接正三棱柱,則正三棱柱的側面積的最大值為()A. B. C. D.8.已知函數的導函數為,記,,…,N.若,則()A. B. C. D.9.若復數在復平面內對應的點在第二象限,則實數的取值范圍是()A. B. C. D.10.已知曲線且過定點,若且,則的最小值為().A. B.9 C.5 D.11.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.復數(i為虛數單位)的共軛復數是A.1+i B.1?i C.?1+i D.?1?i二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線(,)的左,右焦點分別為,,過點的直線與雙曲線的左,右兩支分別交于,兩點,若,,則雙曲線的離心率為__________.14.在正方體中,分別為棱的中點,則直線與直線所成角的正切值為_________.15.已知平面向量,,且,則向量與的夾角的大小為________.16.已知實數滿約束條件,則的最大值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐的底面中,,,平面,是的中點,且(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)線段上是否存在點,使得,若存在指出點的位置,若不存在請說明理由.18.(12分)如圖,在四棱錐中,底面,,,,為的中點,是上的點.(1)若平面,證明:平面.(2)求二面角的余弦值.19.(12分)已知函數.(1)當時,求函數的值域.(2)設函數,若,且的最小值為,求實數的取值范圍.20.(12分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大小;(2)在棱上確定一點,使二面角的平面角的余弦值為.21.(12分)已知函數(是自然對數的底數,).(1)求函數的圖象在處的切線方程;(2)若函數在區間上單調遞增,求實數的取值范圍;(3)若函數在區間上有兩個極值點,且恒成立,求滿足條件的的最小值(極值點是指函數取極值時對應的自變量的值).22.(10分)已知直線過橢圓的右焦點,且交橢圓于A,B兩點,線段AB的中點是,(1)求橢圓的方程;(2)過原點的直線l與線段AB相交(不含端點)且交橢圓于C,D兩點,求四邊形面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

利用數列的遞推關系式,通過累加法求解即可.【詳解】數列滿足:,,可得以上各式相加可得:,故選:.本題考查數列的遞推關系式的應用,數列累加法以及通項公式的求法,考查計算能力.2.B【解析】

甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.3.D【解析】

根據是定義是上的奇函數,滿足,可得函數的周期為3,再由奇函數的性質結合已知可得,利用周期性可得函數在區間上的零點個數.【詳解】∵是定義是上的奇函數,滿足,,可得,

函數的周期為3,

∵當時,,

令,則,解得或1,

又∵函數是定義域為的奇函數,

∴在區間上,有.

由,取,得,得,

∴.

又∵函數是周期為3的周期函數,

∴方程=0在區間上的解有共9個,

故選D.本題考查根的存在性及根的個數判斷,考查抽象函數周期性的應用,考查邏輯思維能力與推理論證能力,屬于中檔題.4.C【解析】

根據題意,得,,則為減函數,從而得出函數的單調性,可比較和,而,比較,即可比較.【詳解】因為,且的圖象經過第一、二、四象限,所以,,所以函數為減函數,函數在上單調遞減,在上單調遞增,又因為,所以,又,,則|,即,所以.故選:C.本題考查利用函數的單調性比較大小,還考查化簡能力和轉化思想.5.D【解析】

甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D本題主要考查了判斷與推理的問題,重點是找到三人中都提到的內容進行分類討論,屬于基礎題型.6.C【解析】

作出三棱錐的實物圖,然后補成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球為同一個球,然后計算出矩形的外接圓直徑,利用公式可計算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實物圖如下圖所示:將其補成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.本題考查三棱錐外接球的表面積,解題時要結合三視圖作出三棱錐的實物圖,并分析三棱錐的結構,選擇合適的模型進行計算,考查推理能力與計算能力,屬于中等題.7.B【解析】

設正三棱柱上下底面的中心分別為,底面邊長與高分別為,利用,可得,進一步得到側面積,再利用基本不等式求最值即可.【詳解】如圖所示.設正三棱柱上下底面的中心分別為,底面邊長與高分別為,則,在中,,化為,,,當且僅當時取等號,此時.故選:B.本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學生的計算能力,是一道中檔題.8.D【解析】

通過計算,可得,最后計算可得結果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D本題考查導數的計算以及不完全歸納法的應用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.9.B【解析】

復數,在復平面內對應的點在第二象限,可得關于a的不等式組,解得a的范圍.【詳解】,由其在復平面對應的點在第二象限,得,則.故選:B.本題考查了復數的運算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎題.10.A【解析】

根據指數型函數所過的定點,確定,再根據條件,利用基本不等式求的最小值.【詳解】定點為,,當且僅當時等號成立,即時取得最小值.故選:A本題考查指數型函數的性質,以及基本不等式求最值,意在考查轉化與變形,基本計算能力,屬于基礎題型.11.A【解析】

由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.本題主要考查充分條件、必要條件的判定,意在考查學生的邏輯推理能力.12.B【解析】分析:化簡已知復數z,由共軛復數的定義可得.詳解:化簡可得z=∴z的共軛復數為1﹣i.故選B.點睛:本題考查復數的代數形式的運算,涉及共軛復數,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設,由雙曲線的定義得出:,由得為等腰三角形,設,根據,可求出,得出,再結合焦點三角形,利用余弦定理:求出和的關系,即可得出離心率.【詳解】解:設,由雙曲線的定義得出:,,由圖可知:,又,即,則,為等腰三角形,,設,,則,,即,解得:,則,,解得:,,解得:,,在中,由余弦定理得:,即:,解得:,即.故答案為:.本題考查雙曲線的定義的應用,以及余弦定理的應用,求雙曲線離心率.14.【解析】

由中位線定理和正方體性質得,從而作出異面直線所成的角,在三角形中計算可得.【詳解】如圖,連接,,,∵分別為棱的中點,∴,又正方體中,即是平行四邊形,∴,∴,(或其補角)就是直線與直線所成角,是等邊三角形,∴=60°,其正切值為.故答案為:.本題考查異面直線所成的角,解題關鍵是根據定義作出異面直線所成的角.15.【解析】

由,解得,進而求出,即可得出結果.【詳解】解:因為,所以,解得,所以,所以向量與的夾角的大小為.都答案為:.本題主要考查平面向量的運算,平面向量垂直,向量夾角等基礎知識;考查運算求解能力,屬于基礎題.16.8【解析】

畫出可行域和目標函數,根據平移計算得到答案.【詳解】根據約束條件,畫出可行域,圖中陰影部分為可行域.又目標函數表示直線在軸上的截距,由圖可知當經過點時截距最大,故的最大值為8.故答案為:.本題考查了線性規劃問題,畫出圖像是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)存在,點為線段的中點.【解析】

(Ⅰ)連結,,,則四邊形為平行四邊形,得到證明.(Ⅱ)建立如圖所示坐標系,平面法向量為,平面的法向量,計算夾角得到答案.(Ⅲ)設,計算,,根據垂直關系得到答案.【詳解】(Ⅰ)連結,,,則四邊形為平行四邊形.平面.(Ⅱ)平面,四邊形為正方形.所以,,兩兩垂直,建立如圖所示坐標系,則,,,,設平面法向量為,則,連結,可得,又所以,平面,平面的法向量,設二面角的平面角為,則.(Ⅲ)線段上存在點使得,設,,,,所以點為線段的中點.本題考查了線面平行,二面角,根據垂直關系確定位置,意在考查學生的計算能力和空間想象能力.18.(1)證明見解析(2)【解析】

(1)因為,利用線面平行的判定定理可證出平面,利用點線面的位置關系,得出和,由于底面,利用線面垂直的性質,得出,且,最后結合線面垂直的判定定理得出平面,即可證出平面.(2)由(1)可知,,兩兩垂直,建立空間直角坐標系,標出點坐標,運用空間向量坐標運算求出所需向量,分別求出平面和平面的法向量,最后利用空間二面角公式,即可求出的余弦值.【詳解】(1)證明:因為,平面,平面,所以平面,因為平面,平面,所以可設平面平面,又因為平面,所以.因為平面,平面,所以,從而得.因為底面,所以.因為,所以.因為,所以平面.綜上,平面.(2)解:由(1)可得,,兩兩垂直,以為原點,,,所在直線分別為,,軸,建立如圖所示的空間直角坐標系.因為,所以,則,,,,所以,,,.設是平面的法向量,由取取,得.設是平面的法向量,由得取,得,所以,即的余弦值為.本題考查線面垂直的判定和空間二面角的計算,還運用線面平行的性質、線面垂直的判定定理、點線面的位置關系、空間向量的坐標運算等,同時考查學生的空間想象能力和邏輯推理能力.19.(1);(2).【解析】

(1)令,求出的范圍,再由指數函數的單調性,即可求出結論;(2)對分類討論,分別求出以及的最小值或范圍,與的最小值建立方程關系,求出的值,進而求出的取值關系.【詳解】(1)當時,,令,∵∴,而是增函數,∴,∴函數的值域是.(2)當時,則在上單調遞減,在上單調遞增,所以的最小值為,在上單調遞增,最小值為,而的最小值為,所以這種情況不可能.當時,則在上單調遞減且沒有最小值,在上單調遞增最小值為,所以的最小值為,解得(滿足題意),所以,解得.所以實數的取值范圍是.本題考查復合函數的值域與分段函數的最值,熟練掌握二次函數圖像和性質是解題的關鍵,屬于中檔題.20.(1)(2)【解析】試題分析:(1)因為AB⊥AC,A1B⊥平面ABC,所以以A為坐標原點,分別以AC、AB所在直線分別為x軸和y軸,以過A,且平行于BA1的直線為z軸建立空間直角坐標系,由AB=AC=A1B=2求出所要用到的點的坐標,求出棱AA1與BC上的兩個向量,由向量的夾角求棱AA1與BC所成的角的大小;

(2)設棱B1C1上的一點P,由向量共線得到P點的坐標,然后求出兩個平面PAB與平面ABA1的一個法向量,把二面角P-AB-A1的平面角的余弦值為,轉化為它們法向量所成角的余弦值,由此確定出P點的坐標.試題解析:解(1)如圖,以為原點建立空間直角坐標系,則,.,故與棱所成的角是.(2)為棱中點,設,則.設平面的法向量為,,則,故而平面的法向量是,則,解得,即為棱中點,其坐標為.點睛:本題主要考查線面垂直的判定與性質,以及利用空間向量求二面角.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當的空間直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據定理結論求出相應的角和距離.21.(1);(2);(3).【解析】

(1)利用導數的幾何意義計算即可;(2)在上恒成立,只需,注意到;(3)在上有兩根,令,求導可得在上單調遞減,在上單調遞增,所以且,,,求出的范圍即可.【詳解】(1)因為,所以,當時,,所以切線方程為,即.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論