廣西壯族自治區貴港市桂平市2025屆高三模擬卷(一)數學試題試卷_第1頁
廣西壯族自治區貴港市桂平市2025屆高三模擬卷(一)數學試題試卷_第2頁
廣西壯族自治區貴港市桂平市2025屆高三模擬卷(一)數學試題試卷_第3頁
廣西壯族自治區貴港市桂平市2025屆高三模擬卷(一)數學試題試卷_第4頁
廣西壯族自治區貴港市桂平市2025屆高三模擬卷(一)數學試題試卷_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣西壯族自治區貴港市桂平市2025屆高三模擬卷(一)數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若關于的不等式有正整數解,則實數的最小值為()A. B. C. D.2.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.3.函數滿足對任意都有成立,且函數的圖象關于點對稱,,則的值為()A.0 B.2 C.4 D.14.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.5.正項等比數列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.6.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.7.已知拋物線的焦點為,為拋物線上一點,,當周長最小時,所在直線的斜率為()A. B. C. D.8.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.9.設函數,若在上有且僅有5個零點,則的取值范圍為()A. B. C. D.10.已知是邊長為的正三角形,若,則A. B.C. D.11.復數的模為().A. B.1 C.2 D.12.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的二項展開式中,含項的系數為__________.14.(5分)已知為實數,向量,,且,則____________.15.已知的展開式中項的系數與項的系數分別為135與,則展開式所有項系數之和為______.16.已知實數,滿足約束條件則的最大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知△ABC三內角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.18.(12分)如圖所示,在四棱錐中,底面為正方形,,,,,為的中點,為棱上的一點.(1)證明:面面;(2)當為中點時,求二面角余弦值.19.(12分)已知函數,.(1)求的值;(2)令在上最小值為,證明:.20.(12分)如圖,三棱臺中,側面與側面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.21.(12分)已知函數,函數.(Ⅰ)判斷函數的單調性;(Ⅱ)若時,對任意,不等式恒成立,求實數的最小值.22.(10分)已知拋物線的焦點為,點,點為拋物線上的動點.(1)若的最小值為,求實數的值;(2)設線段的中點為,其中為坐標原點,若,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

根據題意可將轉化為,令,利用導數,判斷其單調性即可得到實數的最小值.【詳解】因為不等式有正整數解,所以,于是轉化為,顯然不是不等式的解,當時,,所以可變形為.令,則,∴函數在上單調遞增,在上單調遞減,而,所以當時,,故,解得.故選:A.【點睛】本題主要考查不等式能成立問題的解法,涉及到對數函數的單調性的應用,構造函數法的應用,導數的應用等,意在考查學生的轉化能力,屬于中檔題.2.D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.3.C【解析】

根據函數的圖象關于點對稱可得為奇函數,結合可得是周期為4的周期函數,利用及可得所求的值.【詳解】因為函數的圖象關于點對稱,所以的圖象關于原點對稱,所以為上的奇函數.由可得,故,故是周期為4的周期函數.因為,所以.因為,故,所以.故選:C.【點睛】本題考查函數的奇偶性和周期性,一般地,如果上的函數滿足,那么是周期為的周期函數,本題屬于中檔題.4.C【解析】

利用圓心到漸近線的距離等于半徑即可建立間的關系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關鍵是建立三者間的方程或不等關系,本題是一道基礎題.5.D【解析】

設等比數列的公比為q,,運用等比數列的性質和通項公式,以及等差數列的中項性質,解方程可得公比q.【詳解】由題意,正項等比數列中,,可得,即,與的等差中項為4,即,設公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數列的中項性質和等比數列的通項公式的應用,其中解答中熟記等比數列通項公式,合理利用等比數列的性質是解答的關鍵,著重考查了方程思想和運算能力,屬于基礎題.6.D【解析】

根據三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:【點睛】本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學生的運算能力,屬于中檔題.7.A【解析】

本道題繪圖發現三角形周長最小時A,P位于同一水平線上,計算點P的坐標,計算斜率,即可.【詳解】結合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結合拋物線性質可知,PF=PN,所以,故當點P運動到M點處,三角形周長最小,故此時M的坐標為,所以斜率為,故選A.【點睛】本道題考查了拋物線的基本性質,難度中等.8.A【解析】

根據直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.9.A【解析】

由求出范圍,結合正弦函數的圖象零點特征,建立不等量關系,即可求解.【詳解】當時,,∵在上有且僅有5個零點,∴,∴.故選:A.【點睛】本題考查正弦型函數的性質,整體代換是解題的關鍵,屬于基礎題.10.A【解析】

由可得,因為是邊長為的正三角形,所以,故選A.11.D【解析】

利用復數代數形式的乘除運算化簡,再由復數模的計算公式求解.【詳解】解:,復數的模為.故選:D.【點睛】本題主要考查復數代數形式的乘除運算,考查復數模的求法,屬于基礎題.12.C【解析】

由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點睛】本題考查了多面體的內切球與外接球問題,由三視圖求幾何體的表面積,考查了學生的空間想象能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

寫出二項展開式的通項,然后取的指數為求得的值,則項的系數可求得.【詳解】,由,可得.含項的系數為.故答案為:【點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.14.5【解析】

由,,且,得,解得,則,則.15.64【解析】

由題意先求得的值,再令求出展開式中所有項的系數和.【詳解】的展開式中項的系數與項的系數分別為135與,,,由兩式可組成方程組,解得或,令,求得展開式中所有的系數之和為.故答案為:64【點睛】本題考查了二項式定理,考查了賦值法求多項式展開式的系數和,屬于基礎題.16.1【解析】

作出約束條件表示的可行域,轉化目標函數為,當目標函數經過點時,直線的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點的三角形及其內部,轉化目標函數為當目標函數經過點時,直線的截距最大此時取得最大值1.故答案為:1【點睛】本題考查了線性規劃問題,考查了學生轉化劃歸,數形結合,數學運算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)或.【解析】

(1)利用正弦定理對已知代數式化簡,根據余弦定理求解余弦值;(2)根據余弦定理求出b=1或b=3,結合面積公式求解.【詳解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C為三角形內角,∴sinC,∴S△ABCabsinC3×bb,則△ABC的面積為或.【點睛】此題考查利用正余弦定理求解三角形,關鍵在于熟練掌握正弦定理進行邊角互化,利用余弦定理求解邊長,根據面積公式求解面積.18.(1)證明見解析;(2).【解析】

(1)要證明面面,只需證明面即可;(2)以為坐標原點,以,,分別為,,軸建系,分別計算出面法向量,面的法向量,再利用公式計算即可.【詳解】證明:(1)因為底面為正方形,所以又因為,,滿足,所以又,面,面,,所以面.又因為面,所以,面面.(2)由(1)知,,兩兩垂直,以為坐標原點,以,,分別為,,軸建系如圖所示,則,,,,則,.所以,,,,設面法向量為,則由得,令得,,即;同理,設面的法向量為,則由得,令得,,即,所以,設二面角的大小為,則所以二面角余弦值為.【點睛】本題考查面面垂直的證明以及利用向量法求二面角,考查學生的運算求解能力,此類問題關鍵是準確寫出點的坐標,是一道中檔題.19.(1);(2)見解析.【解析】

(1)將轉化為對任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可證,使得,從而可確定在上單調遞減,在上單調遞增,進而可得,即,即可證出.【詳解】函數的定義域為,因為對任意恒成立,即對任意恒成立,令,則,當時,,故在上單調遞增,又,所以當時,,不符合題意;當時,令得,當時,;當時,,所以在上單調遞增,在上單調遞減,所以,所以要使在時恒成立,則只需,即,令,,所以,當時,;當時,,所以在單調遞減,在上單調遞增,所以,即,又,所以,故滿足條件的的值只有(2)由(1)知,所以,令,則,當,時,即在上單調遞增;又,,所以,使得,當時,;當時,,即在上單調遞減,在上單調遞增,且所以,即,所以,即.【點睛】本題主要考查利用導數法求函數的最值及恒成立問題處理方法,第(2)問通過最值問題深化對函數的單調性的考查,同時考查轉化與化歸的思想,屬于中檔題.20.(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進而得線面平行;(Ⅱ)過點作的垂線,建立空間直角坐標系,不妨設,則求得平面的法向量為,設平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內,過點作的垂線,如圖建立空間直角坐標系,不妨設,則,故點,;設平面的法向量為,則有:;設平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.21.(1)故函數在上單調遞增,在上單調遞減;(2).【解析】試題分析:(Ⅰ)根據題意得到的解析式和定義域,求導后根據導函數的符號判斷單調性.(Ⅱ)分析題意可得對任意,恒成立,構造函數,則有對任意,恒成立,然后通過求函數的最值可得所求.試題解析:(I)由題意得,,∴.當時,,函數在上單調遞增;當時,令,解得;令,解得.故函數在上單調遞增,在上單調遞減.綜上,當時,函數在上單調遞增;當時,函數在上單調遞增,在上單調遞減.(II)由題意知.,當時,函數單調遞增.不妨設,又函數單調遞減,所以原問題等價于:當時,對任意,不等式恒成立,即對任意,恒成立.記,由題意得在上單調遞減.所以對任意,恒成立.令,,則在上恒成立.故,而在上單調遞增,所以函數在上的最大值為.由,解得.故實數的最小值為.22.(1)的值為或.(2)【解析】

(1)分類討論,當時,線段與拋物線沒有公共點,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論