




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省黃山市普通高中2025年高三下學(xué)期第三次周考數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若(),,則()A.0或2 B.0 C.1或2 D.12.對(duì)于函數(shù),若滿足,則稱為函數(shù)的一對(duì)“線性對(duì)稱點(diǎn)”.若實(shí)數(shù)與和與為函數(shù)的兩對(duì)“線性對(duì)稱點(diǎn)”,則的最大值為()A. B. C. D.3.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內(nèi)可填寫的條件是()A. B. C. D.4.一只螞蟻在邊長為的正三角形區(qū)域內(nèi)隨機(jī)爬行,則在離三個(gè)頂點(diǎn)距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.5.己知拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)分別在拋物線上,且,直線交于點(diǎn),,垂足為,若的面積為,則到的距離為()A. B. C.8 D.66.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題7.已知點(diǎn)P在橢圓τ:=1(a>b>0)上,點(diǎn)P在第一象限,點(diǎn)P關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A,點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為Q,設(shè),直線AD與橢圓τ的另一個(gè)交點(diǎn)為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.8.一袋中裝有個(gè)紅球和個(gè)黑球(除顏色外無區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.9.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.10.已知正項(xiàng)數(shù)列滿足:,設(shè),當(dāng)最小時(shí),的值為()A. B. C. D.11.已知三棱錐P﹣ABC的頂點(diǎn)都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.12.公比為2的等比數(shù)列中存在兩項(xiàng),,滿足,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知二項(xiàng)式ax-1x6的展開式中的常數(shù)項(xiàng)為-16014.已知三棱錐的四個(gè)頂點(diǎn)都在球O的球面上,,,,,E,F(xiàn)分別為,的中點(diǎn),,則球O的體積為______.15.在棱長為的正方體中,是面對(duì)角線上兩個(gè)不同的動(dòng)點(diǎn).以下四個(gè)命題:①存在兩點(diǎn),使;②存在兩點(diǎn),使與直線都成的角;③若,則四面體的體積一定是定值;④若,則四面體在該正方體六個(gè)面上的正投影的面積的和為定值.其中為真命題的是____.16.已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,滿足,其中,,則的值為_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(mR)的導(dǎo)函數(shù)為.(1)若函數(shù)存在極值,求m的取值范圍;(2)設(shè)函數(shù)(其中e為自然對(duì)數(shù)的底數(shù)),對(duì)任意mR,若關(guān)于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.18.(12分)已知橢圓C:(a>b>0)過點(diǎn)(0,),且滿足a+b=3.(1)求橢圓C的方程;(2)若斜率為的直線與橢圓C交于兩個(gè)不同點(diǎn)A,B,點(diǎn)M坐標(biāo)為(2,1),設(shè)直線MA與MB的斜率分別為k1,k2,試問k1+k2是否為定值?并說明理由.19.(12分)已知函數(shù),函數(shù)在點(diǎn)處的切線斜率為0.(1)試用含有的式子表示,并討論的單調(diào)性;(2)對(duì)于函數(shù)圖象上的不同兩點(diǎn),,如果在函數(shù)圖象上存在點(diǎn),使得在點(diǎn)處的切線,則稱存在“跟隨切線”.特別地,當(dāng)時(shí),又稱存在“中值跟隨切線”.試問:函數(shù)上是否存在兩點(diǎn)使得它存在“中值跟隨切線”,若存在,求出的坐標(biāo),若不存在,說明理由.20.(12分)是數(shù)列的前項(xiàng)和,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列中最小的項(xiàng).21.(12分)已知函數(shù).(1)若函數(shù)不存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;(2)若函數(shù)的兩個(gè)極值點(diǎn)為,,求的最小值.22.(10分)如圖,四棱錐V﹣ABCD中,底面ABCD是菱形,對(duì)角線AC與BD交于點(diǎn)O,VO⊥平面ABCD,E是棱VC的中點(diǎn).(1)求證:VA∥平面BDE;(2)求證:平面VAC⊥平面BDE.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
利用復(fù)數(shù)的模的運(yùn)算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點(diǎn)睛】本小題主要考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.2、D【解析】
根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【詳解】依題意知,與為函數(shù)的“線性對(duì)稱點(diǎn)”,所以,故(當(dāng)且僅當(dāng)時(shí)取等號(hào)).又與為函數(shù)的“線性對(duì)稱點(diǎn),所以,所以,從而的最大值為.故選:D.【點(diǎn)睛】本題以新定義為背景,考查指數(shù)函數(shù)的運(yùn)算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達(dá)式是解題的關(guān)鍵,屬于中檔題.3、C【解析】
根據(jù)循環(huán)結(jié)構(gòu)的程序框圖,帶入依次計(jì)算可得輸出為25時(shí)的值,進(jìn)而得判斷框內(nèi)容.【詳解】根據(jù)循環(huán)程序框圖可知,則,,,,,此時(shí)輸出,因而不符合條件框的內(nèi)容,但符合條件框內(nèi)容,結(jié)合選項(xiàng)可知C為正確選項(xiàng),故選:C.【點(diǎn)睛】本題考查了循環(huán)結(jié)構(gòu)程序框圖的簡單應(yīng)用,完善程序框圖,屬于基礎(chǔ)題.4、A【解析】
求出滿足條件的正的面積,再求出滿足條件的正內(nèi)的點(diǎn)到頂點(diǎn)、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點(diǎn)、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點(diǎn)到三個(gè)頂點(diǎn)、、的距離都大于的概率是.故選:A.【點(diǎn)睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應(yīng)用,考查計(jì)算能力,屬于中等題.5、D【解析】
作,垂足為,過點(diǎn)N作,垂足為G,設(shè),則,結(jié)合圖形可得,,從而可求出,進(jìn)而可求得,,由的面積即可求出,再結(jié)合為線段的中點(diǎn),即可求出到的距離.【詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過點(diǎn)N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因?yàn)椋詾榫€段的中點(diǎn),所以F到l的距離為.故選:D【點(diǎn)睛】本題主要考查拋物線的幾何性質(zhì)及平面幾何的有關(guān)知識(shí),屬于中檔題.6、D【解析】選項(xiàng)A,否命題為“若,則”,故A不正確.選項(xiàng)B,逆命題為“若,則”,為假命題,故B不正確.選項(xiàng)C,由題意知對(duì),都有,故C不正確.選項(xiàng)D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.7、C【解析】
設(shè),則,,,設(shè),根據(jù)化簡得到,得到答案.【詳解】設(shè),則,,,則,設(shè),則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點(diǎn)睛】本題考查了橢圓的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.8、A【解析】
由題意可知,隨機(jī)變量的可能取值有、、、,計(jì)算出隨機(jī)變量在不同取值下的概率,進(jìn)而可求得隨機(jī)變量的數(shù)學(xué)期望值.【詳解】由題意可知,隨機(jī)變量的可能取值有、、、,則,,,.因此,隨機(jī)變量的數(shù)學(xué)期望為.故選:A.【點(diǎn)睛】本題考查隨機(jī)變量數(shù)學(xué)期望的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.9、D【解析】
根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對(duì)稱,排除AB,計(jì)算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于f1.5≤2故選:D.【點(diǎn)睛】本題考查了函數(shù)圖像的識(shí)別,確定函數(shù)關(guān)于1,0中心對(duì)稱是解題的關(guān)鍵.10、B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時(shí)取得最小值,此時(shí).故選:B【點(diǎn)睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運(yùn)算求解能力.11、D【解析】
由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點(diǎn)為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計(jì)算能力,屬于中檔題.12、D【解析】
根據(jù)已知條件和等比數(shù)列的通項(xiàng)公式,求出關(guān)系,即可求解.【詳解】,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,最小值為.故選:D.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式,注意為正整數(shù),如用基本不等式要注意能否取到等號(hào),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
在二項(xiàng)展開式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng),再根據(jù)常數(shù)項(xiàng)等于-160求得實(shí)數(shù)a的值.【詳解】∵二項(xiàng)式(ax-1x)令6-2r=0,求得r=3,可得常數(shù)項(xiàng)為-C63故答案為:2.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.14、【解析】
可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據(jù)體積公式計(jì)算可得.【詳解】解:,,,因?yàn)闉榈闹悬c(diǎn),所以為的外心,因?yàn)椋渣c(diǎn)在內(nèi)的投影為的外心,所以平面,平面,所以,所以,又球心在上,設(shè),則,所以,所以球O體積,.故答案為:【點(diǎn)睛】本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計(jì)算能力,屬于中檔題.15、①③④【解析】
對(duì)于①中,當(dāng)點(diǎn)與點(diǎn)重合,與點(diǎn)重合時(shí),可判斷①正確;當(dāng)點(diǎn)點(diǎn)與點(diǎn)重合,與直線所成的角最小為,可判定②不正確;根據(jù)平面將四面體可分成兩個(gè)底面均為平面,高之和為的棱錐,可判定③正確;四面體在上下兩個(gè)底面和在四個(gè)側(cè)面上的投影,均為定值,可判定④正確.【詳解】對(duì)于①中,當(dāng)點(diǎn)與點(diǎn)重合,與點(diǎn)重合時(shí),,所以①正確;對(duì)于②中,當(dāng)點(diǎn)點(diǎn)與點(diǎn)重合,與直線所成的角最小,此時(shí)兩異面直線的夾角為,所以②不正確;對(duì)于③中,設(shè)平面兩條對(duì)角線交點(diǎn)為,可得平面,平面將四面體可分成兩個(gè)底面均為平面,高之和為的棱錐,所以四面體的體積一定是定值,所以③正確;對(duì)于④中,四面體在上下兩個(gè)底面上的投影是對(duì)角線互相垂直且對(duì)角線長度均為1的四邊形,其面積為定義,四面體在四個(gè)側(cè)面上的投影,均為上底為,下底和高均為1的梯形,其面積為定值,故四面體在該正方體六個(gè)面上的正投影的面積的和為定值,所以④正確.故答案為:①③④.【點(diǎn)睛】本題主要考查了以空間幾何體的結(jié)構(gòu)特征為載體的謎題的真假判定及應(yīng)用,其中解答中涉及到棱柱的集合特征,異面直線的關(guān)系和椎體的體積,以及投影的綜合應(yīng)用,著重考查了推理與論證能力,屬于中檔試題.16、【解析】
根據(jù)題意,判斷出,根據(jù)等比數(shù)列的性質(zhì)可得,再令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數(shù)列中的,,,根據(jù)等差數(shù)列的性質(zhì),可得,所以.②根據(jù)①②得出,.所以.故答案為.【點(diǎn)睛】本題主要考查等差數(shù)列、等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2){1,2}.【解析】
(1)求解導(dǎo)數(shù),表示出,再利用的導(dǎo)數(shù)可求m的取值范圍;(2)表示出,結(jié)合二次函數(shù)知識(shí)求出的最小值,再結(jié)合導(dǎo)數(shù)及基本不等式求出的最值,從而可求正整數(shù)k的取值集合.【詳解】(1)因?yàn)椋裕裕瑒t,由題意可知,解得;(2)由(1)可知,,所以因?yàn)檎淼茫O(shè),則,所以單調(diào)遞增,又因?yàn)椋源嬖冢沟茫O(shè),是關(guān)于開口向上的二次函數(shù),則,設(shè),則,令,則,所以單調(diào)遞增,因?yàn)椋源嬖冢沟茫矗?dāng)時(shí),,當(dāng)時(shí),,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,因?yàn)椋裕钟深}意可知,所以,解得,所以正整數(shù)k的取值集合為{1,2}.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,利用導(dǎo)數(shù)研究極值問題一般轉(zhuǎn)化為導(dǎo)數(shù)的零點(diǎn)問題,恒成立問題要逐步消去參數(shù),轉(zhuǎn)化為最值問題求解,適當(dāng)構(gòu)造函數(shù)是轉(zhuǎn)化的關(guān)鍵,本題綜合性較強(qiáng),難度較大,側(cè)重考查數(shù)學(xué)抽象和邏輯推理的核心素養(yǎng).18、(1)(2)k1+k2為定值0,見解析【解析】
(1)利用已知條件直接求解,得到橢圓的方程;(2)設(shè)直線在軸上的截距為,推出直線方程,然后將直線與橢圓聯(lián)立,設(shè),利用韋達(dá)定理求出,然后化簡求解即可.【詳解】(1)由橢圓過點(diǎn)(0,),則,又a+b=3,所以,故橢圓的方程為;(2),證明如下:設(shè)直線在軸上的截距為,所以直線的方程為:,由得:,由得,設(shè),則,所以,又,所以,故.【點(diǎn)睛】本題主要考查了橢圓的標(biāo)準(zhǔn)方程的求解,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查了方程的思想,轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運(yùn)算求解能力.19、(1),單調(diào)性見解析;(2)不存在,理由見解析【解析】
(1)由題意得,即可得;求出函數(shù)的導(dǎo)數(shù),再根據(jù)、、、分類討論,分別求出、的解集即可得解;(2)假設(shè)滿足條件的、存在,不妨設(shè),且,由題意得可得,令(),構(gòu)造函數(shù)(),求導(dǎo)后證明即可得解.【詳解】(1)由題可得函數(shù)的定義域?yàn)榍遥桑淼?.(ⅰ)當(dāng)時(shí),易知,,時(shí).故在上單調(diào)遞增,在上單調(diào)遞減.(ⅱ)當(dāng)時(shí),令,解得或,則①當(dāng),即時(shí),在上恒成立,則在上遞增.②當(dāng),即時(shí),當(dāng)時(shí),;當(dāng)時(shí),.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.③當(dāng),即時(shí),當(dāng)時(shí),;當(dāng)時(shí),.所以在上單調(diào)遞增,單調(diào)遞減,單調(diào)遞增.綜上,當(dāng)時(shí),在上單調(diào)遞增,在單調(diào)遞減.當(dāng)時(shí),在及上單調(diào)遞增;在上單調(diào)遞減.當(dāng)時(shí),在上遞增.當(dāng)時(shí),在及上單調(diào)遞增;在上遞減.(2)滿足條件的、不存在,理由如下:假設(shè)滿足條件的、存在,不妨設(shè),且,則,又,由題可知,整理可得:,令(),構(gòu)造函數(shù)().則,所以在上單調(diào)遞增,從而,所以方程無解,即無解.綜上,滿足條件的A、B不存在.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化化歸思想,屬于中檔題.20、(1);(2).【解析】
(1)由可得出,兩式作差可求得數(shù)列的通項(xiàng)公式;(2)求得,利用數(shù)列的單調(diào)性的定義判斷數(shù)列的單調(diào)性,由此可求得數(shù)列的最小項(xiàng)的值.【詳解】(1)對(duì)任意的,由得,兩式相減得,因此,數(shù)列的通項(xiàng)公式為;(2)由(1)得,則.當(dāng)時(shí),,即,;當(dāng)時(shí),,即,.所以,數(shù)列的最小項(xiàng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2018春冀少版八年級(jí)生物下冊第六單元第4章教學(xué)設(shè)計(jì):6.4現(xiàn)代生物技術(shù)
- Module 5 Unit 2教學(xué)設(shè)計(jì)2024-2025學(xué)年外研版英語九年級(jí)上冊
- 16夏天里的成長(第二課時(shí))教學(xué)設(shè)計(jì)-2024-2025學(xué)年語文六年級(jí)上冊統(tǒng)編版
- 2024秋八年級(jí)英語下冊 Module 7 Summer in Los Angeles Unit 3 Language in use教學(xué)設(shè)計(jì)含教學(xué)反思(新版)外研版
- 生產(chǎn)設(shè)備安全操作培訓(xùn)
- 2024-2025學(xué)年高中政治上學(xué)期第1周《體味文化》教學(xué)設(shè)計(jì)
- Unit6 第3課時(shí) (教學(xué)設(shè)計(jì))Wrap-up time三年級(jí)英語上冊同步高效課堂系列(譯林版三起·2024秋)
- 2023八年級(jí)物理上冊 第一章 打開物理世界的大門第一節(jié) 走進(jìn)神奇教學(xué)設(shè)計(jì) (新版)滬科版
- 4.1線段、射線、直線 教學(xué)設(shè)計(jì) 2024-2025學(xué)年北師大版(2024)數(shù)學(xué)七年級(jí)上冊
- 血液透析護(hù)士長述職報(bào)告
- 醫(yī)院臨時(shí)用藥申請(qǐng)表
- 護(hù)理人員儀容儀表及行為規(guī)范
- 農(nóng)民合作社財(cái)務(wù)報(bào)表(專業(yè)應(yīng)用)
- T∕CIS 71001-2021 化工安全儀表系統(tǒng)安全要求規(guī)格書編制導(dǎo)則
- 第4章-3D構(gòu)型圖-Chem3D
- 第六章廣播電視的傳播符號(hào)
- 預(yù)制梁質(zhì)量控制要點(diǎn)及注意事項(xiàng)手冊
- 家庭《弟子規(guī)》力行表
- 水利部《水利工程維修養(yǎng)護(hù)定額標(biāo)準(zhǔn)》(試點(diǎn))
- 校園避震有辦法PPT課件
- 農(nóng)產(chǎn)品質(zhì)量檢測實(shí)驗(yàn)室100條評(píng)審準(zhǔn)備要點(diǎn)
評(píng)論
0/150
提交評(píng)論