




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省鄂州市五校2023-2024學年中考數學押題試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A.a4+a5=a9B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6aD.(2a﹣b)2=4a2﹣b22.對于點A(x1,y1),B(x2,y2),定義一種運算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四點C,D,E,F,滿足,則C,D,E,F四點【】A.在同一條直線上B.在同一條拋物線上C.在同一反比例函數圖象上D.是同一個正方形的四個頂點3.在平面直角坐標系xOy中,二次函數y=ax2+bx+c(a≠0)的大致圖象如圖所示,則下列結論正確的是()A.a<0,b<0,c>0B.﹣=1C.a+b+c<0D.關于x的方程ax2+bx+c=﹣1有兩個不相等的實數根4.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段AC的長為()A.4 B.4 C.6 D.45.下面四個立體圖形,從正面、左面、上面對空都不可能看到長方形的是A. B. C. D.6.如圖,在平面直角坐標系中,已知點A(―3,6)、B(―9,一3),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應點A′的坐標是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)7.下列調查中,調查方式選擇合理的是()A.為了解襄陽市初中每天鍛煉所用時間,選擇全面調查B.為了解襄陽市電視臺《襄陽新聞》欄目的收視率,選擇全面調查C.為了解神舟飛船設備零件的質量情況,選擇抽樣調查D.為了解一批節能燈的使用壽命,選擇抽樣調查8.如圖,矩形紙片中,,,將沿折疊,使點落在點處,交于點,則的長等于()A. B. C. D.9.如圖,正比例函數y=x與反比例函數y=4x的圖象交于A(2,2)、B(﹣2,﹣2)兩點,當y=x的函數值大于A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>210.如圖,在平面直角坐標系中,線段AB的端點坐標為A(-2,4),B(4,2),直線y=kx-2與線段AB有交點,則K的值不可能是()A.-5 B.-2 C.3 D.5二、填空題(共7小題,每小題3分,滿分21分)11.拋物線y=(x+1)2-2的頂點坐標是______.12.2017年7月27日上映的國產電影《戰狼2》,風靡全國.劇中“犯我中華者,雖遠必誅”鼓舞人心,彰顯了祖國的強大實力與影響力,累計票房56.8億元.將56.8億元用科學記數法表示為_____元.13.將直尺和直角三角尺按如圖方式擺放.若,,則________.14.矩形紙片ABCD,AB=9,BC=6,在矩形邊上有一點P,且DP=1.將矩形紙片折疊,使點B與點P重合,折痕所在直線交矩形兩邊于點E,F,則EF長為________.15.二次函數y=ax2+bx+c的圖象如圖所示,以下結論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標為(,﹣2);⑤當x<時,y隨x的增大而減小;⑥a+b+c>0中,正確的有______.(只填序號)16.如圖,線段AB兩端點坐標分別為A(﹣1,5)、B(3,3),線段CD兩端點坐標分別為C(5,3)、D(3,﹣1)數學課外興趣小組研究這兩線段發現:其中一條線段繞著某點旋轉一個角度可得到另一條線段,請寫出旋轉中心的坐標________.17.在一次數學測試中,同年級人數相同的甲、乙兩個班的成績統計如下表:班級平均分中位數方差甲班乙班數學老師讓同學們針對統計的結果進行一下評估,學生的評估結果如下:這次數學測試成績中,甲、乙兩個班的平均水平相同;甲班學生中數學成績95分及以上的人數少;乙班學生的數學成績比較整齊,分化較小.上述評估中,正確的是______填序號三、解答題(共7小題,滿分69分)18.(10分)黃巖某校搬遷后,需要增加教師和學生的寢室數量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因實際需要,單人間的數量在20至30之間(包括20和30),且四人間的數量是雙人間的5倍.(1)若2018年學校寢室數為64個,以后逐年增加,預計2020年寢室數達到121個,求2018至2020年寢室數量的年平均增長率;(2)若三類不同的寢室的總數為121個,則最多可供多少師生住宿?19.(5分)某校計劃購買籃球、排球共20個.購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同.籃球和排球的單價各是多少元?若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案.20.(8分)為了傳承中華優秀傳統文化,市教育局決定開展“經典誦讀進校園”活動,某校團委組織八年級100名學生進行“經典誦讀”選拔賽,賽后對全體參賽學生的成績進行整理,得到下列不完整的統計圖表.組別分數段頻次頻率A60≤x<70170.17B
70≤x<80
30
aC
80≤x<90
b
0.45D
90≤x<100
8
0.08請根據所給信息,解答以下問題:(1)表中a=______,b=______;(2)請計算扇形統計圖中B組對應扇形的圓心角的度數;(3)已知有四名同學均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學,學校將從這四名同學中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學都被選中的概率.21.(10分)如圖,在三個小桶中裝有數量相同的小球(每個小桶中至少有三個小球),第一次變化:從左邊小桶中拿出兩個小球放入中間小桶中;第二次變化:從右邊小桶中拿出一個小球放入中間小桶中;第三次變化:從中間小桶中拿出一些小球放入右邊小桶中,使右邊小桶中小球個數是最初的兩倍.(1)若每個小桶中原有3個小球,則第一次變化后,中間小桶中小球個數是左邊小桶中小球個數的____倍;(2)若每個小桶中原有a個小球,則第二次變化后中間小桶中有_____個小球(用a表示);(3)求第三次變化后中間小桶中有多少個小球?22.(10分)如圖,AD是等腰△ABC底邊BC上的高,點O是AC中點,延長DO到E,使AE∥BC,連接AE.求證:四邊形ADCE是矩形;①若AB=17,BC=16,則四邊形ADCE的面積=.②若AB=10,則BC=時,四邊形ADCE是正方形.23.(12分)如圖,在平面直角坐標系中,直線:與軸,軸分別交于,兩點,且點,點在軸正半軸上運動,過點作平行于軸的直線.(1)求的值和點的坐標;(2)當時,直線與直線交于點,反比例函數的圖象經過點,求反比例函數的解析式;(3)當時,若直線與直線和(2)反比例函數的圖象分別交于點,,當間距離大于等于2時,求的取值范圍.24.(14分)小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關數據如圖2.(參考數據:sin37°=
,cos37°=
,tan37°=
)
(1)求把手端點A到BD的距離;
(2)求CH的長.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】分析:根據合并同類項、冪的乘方與積的乘方、單項式乘多項式法則以及完全平方公式進行計算.詳解:A、a4與a5不是同類項,不能合并,故本選項錯誤;B、(2a2b3)2=4a4b6,故本選項正確;C、-2a(a+3)=-2a2-6a,故本選項錯誤;D、(2a-b)2=4a2-4ab+b2,故本選項錯誤;故選:B.點睛:本題主要考查了合并同類項的法則、冪的乘方與積的乘方、單項式乘多項式法則以及完全平方公式,熟練掌握運算法則是解題的關鍵.2、A。【解析】∵對于點A(x1,y1),B(x2,y2),,∴如果設C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么,。又∵,∴。∴。令,則C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直線上,∴互不重合的四點C,D,E,F在同一條直線上。故選A。3、D【解析】試題分析:根據圖像可得:a<0,b>0,c<0,則A錯誤;,則B錯誤;當x=1時,y=0,即a+b+c=0,則C錯誤;當y=-1時有兩個交點,即有兩個不相等的實數根,則正確,故選D.4、B【解析】
由已知條件可得,可得出,可求出AC的長.【詳解】解:由題意得:∠B=∠DAC,∠ACB=∠ACD,所以,根據“相似三角形對應邊成比例”,得,又AD是中線,BC=8,得DC=4,代入可得AC=,故選B.【點睛】本題主要考查相似三角形的判定與性質.靈活運用相似的性質可得出解答.5、B【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形依此找到從正面、左面、上面觀察都不可能看到長方形的圖形.【詳解】解:A、主視圖為三角形,左視圖為三角形,俯視圖為有對角線的矩形,故本選項錯誤;B、主視圖為等腰三角形,左視圖為等腰三角形,俯視圖為圓,從正面、左面、上面觀察都不可能看到長方形,故本選項正確;C、主視圖為長方形,左視圖為長方形,俯視圖為圓,故本選項錯誤;D、主視圖為長方形,左視圖為長方形,俯視圖為長方形,故本選項錯誤.故選:B.【點睛】本題重點考查三視圖的定義以及考查學生的空間想象能力.6、D【解析】
試題分析:方法一:∵△ABO和△A′B′O關于原點位似,∴△ABO∽△A′B′O且=.∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵點A(―3,6)且相似比為,∴點A的對應點A′的坐標是(―3×,6×),∴A′(-1,2).∵點A′′和點A′(-1,2)關于原點O對稱,∴A′′(1,―2).故答案選D.考點:位似變換.7、D【解析】
A.為了解襄陽市初中每天鍛煉所用時間,選擇抽樣調查,故A不符合題意;B.為了解襄陽市電視臺《襄陽新聞》欄目的收視率,選擇抽樣調查,故B不符合題意;C.為了解神舟飛船設備零件的質量情況,選普查,故C不符合題意;D.為了解一批節能燈的使用壽命,選擇抽樣調查,故D符合題意;故選D.8、B【解析】
由折疊的性質得到AE=AB,∠E=∠B=90°,易證Rt△AEF≌Rt△CDF,即可得到結論EF=DF;易得FC=FA,設FA=x,則FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到關于x的方程x2=42+(6-x)2,解方程求出x即可.【詳解】∵矩形ABCD沿對角線AC對折,使△ABC落在△ACE的位置,
∴AE=AB,∠E=∠B=90°,
又∵四邊形ABCD為矩形,
∴AB=CD,
∴AE=DC,
而∠AFE=∠DFC,
∵在△AEF與△CDF中,,∴△AEF≌△CDF(AAS),
∴EF=DF;
∵四邊形ABCD為矩形,
∴AD=BC=6,CD=AB=4,
∵Rt△AEF≌Rt△CDF,
∴FC=FA,
設FA=x,則FC=x,FD=6-x,
在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,則FD=6-x=.故選B.【點睛】考查了折疊的性質:折疊前后兩圖形全等,即對應角相等,對應邊相等.也考查了矩形的性質和三角形全等的判定與性質以及勾股定理.9、D【解析】試題分析:觀察函數圖象得到當﹣2<x<0或x>2時,正比例函數圖象都在反比例函數圖象上方,即有y=x的函數值大于y=4考點:1.反比例函數與一次函數的交點問題;2.數形結合思想的應用.10、B【解析】
當直線y=kx-2與線段AB的交點為A點時,把A(-2,4)代入y=kx-2,求出k=-3,根據一次函數的有關性質得到當k≤-3時直線y=kx-2與線段AB有交點;當直線y=kx-2與線段AB的交點為B點時,把B(4,2)代入y=kx-2,求出k=1,根據一次函數的有關性質得到當k≥1時直線y=kx-2與線段AB有交點,從而能得到正確選項.【詳解】把A(-2,4)代入y=kx-2得,4=-2k-2,解得k=-3,∴當直線y=kx-2與線段AB有交點,且過第二、四象限時,k滿足的條件為k≤-3;把B(4,2)代入y=kx-2得,4k-2=2,解得k=1,∴當直線y=kx-2與線段AB有交點,且過第一、三象限時,k滿足的條件為k≥1.即k≤-3或k≥1.所以直線y=kx-2與線段AB有交點,則k的值不可能是-2.故選B.【點睛】本題考查了一次函數y=kx+b(k≠0)的性質:當k>0時,圖象必過第一、三象限,k越大直線越靠近y軸;當k<0時,圖象必過第二、四象限,k越小直線越靠近y軸.二、填空題(共7小題,每小題3分,滿分21分)11、(-1,-2)【解析】試題分析:因為y=(x+1)2﹣2是拋物線的頂點式,根據頂點式的坐標特點可知,頂點坐標為(﹣1,﹣2),故答案為(﹣1,﹣2).考點:二次函數的性質.12、5.68×109【解析】試題解析:科學記數法的表示形式為的形式,其中為整數.確定的值時,要看把原數變成時,小數點移動了多少位,的絕對值與小數點移動的位數相同.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.56.8億故答案為13、80°.【解析】
由于直尺外形是矩形,根據矩形的性質可知對邊平行,所以∠4=∠3,再根據外角的性質即可求出結果.【詳解】解:如圖所示,依題意得:∠4=∠3,∵∠4=∠2+∠1=80°∴∠3=80°.故答案為80°.【點睛】本題考查了平行線的性質和三角形外角的性質,掌握三角形外角的性質是解題的關鍵.14、6或2.【解析】試題分析:根據P點的不同位置,此題分兩種情況計算:①點P在CD上;②點P在AD上.①點P在CD上時,如圖:∵PD=1,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四邊形PFBE是鄰邊相等的矩形即正方形,EF過點C,∵BF=BC=6,∴由勾股定理求得EF=;②點P在AD上時,如圖:先建立相似三角形,過E作EQ⊥AB于Q,∵PD=1,AD=6,∴AP=1,AB=9,由勾股定理求得PB==1,∵EF垂直平分PB,∴∠1=∠2(同角的余角相等),又∵∠A=∠EQF=90°,∴△ABP∽△EFQ(兩角對應相等,兩三角形相似),∴對應線段成比例:,代入相應數值:,∴EF=2.綜上所述:EF長為6或2.考點:翻折變換(折疊問題).15、①②③⑤【解析】
根據圖象可判斷①②③④⑤,由x=1時,y<0,可判斷⑥【詳解】由圖象可得,a>0,c<0,b<0,△=b2﹣4ac>0,對稱軸為x=∴abc>0,4ac<b2,當時,y隨x的增大而減小.故①②⑤正確,∵∴2a+b>0,故③正確,由圖象可得頂點縱坐標小于﹣2,則④錯誤,當x=1時,y=a+b+c<0,故⑥錯誤故答案為:①②③⑤【點睛】本題考查的是二次函數圖象與系數的關系,二次函數y=ax2+bx+c系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數確定.16、或【解析】
分點A的對應點為C或D兩種情況考慮:當點A的對應點為點C時,連接AC、BD,分別作線段AC、BD的垂直平分線交于點E,點E即為旋轉中心;當點A的對應點為點D時,連接AD、BC,分別作線段AD、BC的垂直平分線交于點M,點M即為旋轉中心此題得解.【詳解】當點A的對應點為點C時,連接AC、BD,分別作線段AC、BD的垂直平分線交于點E,如圖1所示:點的坐標為,B點的坐標為,點的坐標為;當點A的對應點為點D時,連接AD、BC,分別作線段AD、BC的垂直平分線交于點M,如圖2所示:點的坐標為,B點的坐標為,點的坐標為.綜上所述:這個旋轉中心的坐標為或.故答案為或.【點睛】本題考查了坐標與圖形變化中的旋轉,根據給定點的坐標找出旋轉中心的坐標是解題的關鍵.17、【解析】
根據平均數、中位數和方差的意義分別對每一項進行解答,即可得出答案.【詳解】解:∵甲班的平均成績是92.5分,乙班的平均成績是92.5分,∴這次數學測試成績中,甲、乙兩個班的平均水平相同;故正確;∵甲班的中位數是95.5分,乙班的中位數是90.5分,甲班學生中數學成績95分及以上的人數多,故錯誤;∵甲班的方差是41.25分,乙班的方差是36.06分,甲班的方差大于乙班的方差,乙班學生的數學成績比較整齊,分化較小;故正確;上述評估中,正確的是;故答案為:.【點睛】本題考查平均數、中位數和方差,平均數表示一組數據的平均程度中位數是將一組數據從小到大或從大到小重新排列后,最中間的那個數或最中間兩個數的平均數;方差是用來衡量一組數據波動大小的量.三、解答題(共7小題,滿分69分)18、(1)2018至2020年寢室數量的年平均增長率為37.5%;(2)該校的寢室建成后最多可供1名師生住宿.【解析】
(1)設2018至2020年寢室數量的年平均增長率為x,根據2018及2020年寢室數量,即可得出關于x的一元二次方程,解之取其正值即可得出結論;(2)設雙人間有y間,則四人間有5y間,單人間有(121-6y)間,可容納人數為w人,由單人間的數量在20至30之間(包括20和30),即可得出關于y的一元一次不等式組,解之即可得出y的取值范圍,再根據可住師生數=寢室數×每間寢室可住人數,可找出w關于y的函數關系式,利用一次函數的性質即可解決最值問題.【詳解】(1)解:設2018至2020年寢室數量的年平均增長率為x,根據題意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=﹣2.375(不合題意,舍去).答:2018至2020年寢室數量的年平均增長率為37.5%.(2)解:設雙人間有y間,可容納人數為w人,則四人間有5y間,單人間有(121﹣6y)間,∵單人間的數量在20至30之間(包括20和30),∴,解得:15≤y≤16.根據題意得:w=2y+20y+121﹣6y=16y+121,∴當y=16時,16y+121取得最大值為1.答:該校的寢室建成后最多可供1名師生住宿.【點睛】本題考查了一元二次方程的應用、一元一次不等式組的應用以及一次函數的性質,解題的關鍵是:(1)找準等量關系,正確列出一元二次方程;(2)根據數量之間的關系,找出w關于y的函數關系式.19、(1)籃球每個50元,排球每個30元.(2)滿足題意的方案有三種:①購買籃球8個,排球12個;②購買籃球9,排球11個;③購買籃球2個,排球2個;方案①最省錢【解析】試題分析:(1)設籃球每個x元,排球每個y元,根據費用可得等量關系為:購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同,列方程求解即可;(2)不等關系為:購買足球和籃球的總費用不超過1元,列式求得解集后得到相應整數解,從而求解.試題解析:解:(1)設籃球每個x元,排球每個y元,依題意,得:解得.答:籃球每個50元,排球每個30元.(2)設購買籃球m個,則購買排球(20-m)個,依題意,得:50m+30(20-m)≤1.解得:m≤2.又∵m≥8,∴8≤m≤2.∵籃球的個數必須為整數,∴只能取8、9、2.∴滿足題意的方案有三種:①購買籃球8個,排球12個,費用為760元;②購買籃球9,排球11個,費用為780元;③購買籃球2個,排球2個,費用為1元.以上三個方案中,方案①最省錢.點睛:本題主要考查了二元一次方程組及一元一次不等式的應用;得到相應總費用的關系式是解答本題的關鍵.20、(1)0.3,45;(2)108°;(3).【解析】
(1)首先根據A組頻數及其頻率可得總人數,再利用頻數、頻率之間的關系求得a、b;(2)B組的頻率乘以360°即可求得答案;(2)畫樹形圖后即可將所有情況全部列舉出來,從而求得恰好抽中者兩人的概率;【詳解】(1)本次調查的總人數為17÷0.17=100(人),則a==0.3,b=100×0.45=45(人).故答案為0.3,45;(2)360°×0.3=108°.答:扇形統計圖中B組對應扇形的圓心角為108°.(3)將同一班級的甲、乙學生記為A、B,另外兩學生記為C、D,畫樹形圖得:∵共有12種等可能的情況,甲、乙兩名同學都被選中的情況有2種,∴甲、乙兩名同學都被選中的概率為=.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.21、(1)5;(2)(a+3);(3)第三次變化后中間小桶中有2個小球.【解析】
(1)(2)根據材料中的變化方法解答;(3)設原來每個捅中各有a個小球,根據第三次變化方法列出方程并解答.【詳解】解:(1)依題意得:(3+2)÷(3﹣2)=5故答案是:5;(2)依題意得:a+2+1=a+3;故答案是:(a+3)(3)設原來每個捅中各有a個小球,第三次從中間桶拿出x個球,依題意得:a﹣1+x=2ax=a+1所以a+3﹣x=a+3﹣(a+1)=2答:第三次變化后中間小桶中有2個小球.【點睛】考查了一元一次方程的應用和列代數式,解題的關鍵是找到描述語,列出等量關系,得到方程并解答.22、(1)見解析;(2)①1;②.【解析】試題分析:(1)根據平行四邊形的性質得出四邊形ADCE是平行四邊形,根據垂直推出∠ADC=90°,根據矩形的判定得出即可;(2)①求出DC,根據勾股定理求出AD,根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 礦產勘查中的勘查方法選擇與優化考核試卷
- 甘肅省2025屆高三下學期4月月考(二模)英語試卷(含答案無聽力原文及音頻)
- 2025年瓦斯防突工職業技能鑒定參考試題庫(含答案)
- 2025年合作協議:經營權轉讓合同書
- 《孔明借箭》課件-2
- 法律課程學習心得體會
- 剖腹產的護理診斷及措施
- 費用報銷知識
- 小升初-間隔問題
- 2025年度3月份冷鏈車輛柴油發電機雙備份協議
- 工程振動分析與控制基礎 第2版 課件 第5、6章 傳遞矩陣法、有限元法
- 銀行防搶應急預案演練方案總結
- 三亞市崖州中心漁港停泊避風水域擴建項目 環評報告
- 巴林銀行倒閉案課件
- 2023年海洋運輸企業風險管理與內控
- 部編版道德與法治三年級下冊全冊單元知識點梳理期末復習
- 兒童孤獨癥的診斷與康復治療
- 發掘無限潛能成就最好的自己主題班會課件
- 中集集裝箱安全培訓
- 病毒感染導致的細胞周期調控異常
- 3D打印技術在航空航天領域的應用
評論
0/150
提交評論