福建省莆田市仙游縣楓亭中學2024屆高三七校聯考數學試題試卷_第1頁
福建省莆田市仙游縣楓亭中學2024屆高三七校聯考數學試題試卷_第2頁
福建省莆田市仙游縣楓亭中學2024屆高三七校聯考數學試題試卷_第3頁
福建省莆田市仙游縣楓亭中學2024屆高三七校聯考數學試題試卷_第4頁
福建省莆田市仙游縣楓亭中學2024屆高三七校聯考數學試題試卷_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省莆田市仙游縣楓亭中學2024屆高三七校聯考數學試題試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm32.下圖為一個正四面體的側面展開圖,為的中點,則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.3.已知雙曲線,過原點作一條傾斜角為直線分別交雙曲線左、右兩支P,Q兩點,以線段PQ為直徑的圓過右焦點F,則雙曲線離心率為A. B. C.2 D.4.閱讀如圖的程序框圖,若輸出的值為25,那么在程序框圖中的判斷框內可填寫的條件是()A. B. C. D.5.若均為任意實數,且,則的最小值為()A. B. C. D.6.設,,是非零向量.若,則()A. B. C. D.7.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.8.設數列的各項均為正數,前項和為,,且,則()A.128 B.65 C.64 D.639.洛書,古稱龜書,是陰陽五行術數之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結構是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數,四角黑點為陰數.如圖,若從四個陰數和五個陽數中分別隨機選取1個數,則其和等于11的概率是().A. B. C. D.10.函數(其中是自然對數的底數)的大致圖像為()A. B. C. D.11.已知函數在上都存在導函數,對于任意的實數都有,當時,,若,則實數的取值范圍是()A. B. C. D.12.若,則下列關系式正確的個數是()①②③④A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.設為數列的前項和,若,則____14.在平面直角坐標系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點,則弦的長為_________15.如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,則此四棱錐的體積為_____.16.函數在處的切線方程是____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦點在軸上,且順次連接四個頂點恰好構成了一個邊長為且面積為的菱形.(1)求橢圓的方程;(2)設,過橢圓右焦點的直線交于、兩點,若對滿足條件的任意直線,不等式恒成立,求的最小值.18.(12分)如圖所示,在四面體中,,平面平面,,且.(1)證明:平面;(2)設為棱的中點,當四面體的體積取得最大值時,求二面角的余弦值.19.(12分)為增強學生的法治觀念,營造“學憲法、知憲法、守憲法”的良好校園氛圍,某學校開展了“憲法小衛士”活動,并組織全校學生進行法律知識競賽.現從全校學生中隨機抽取50名學生,統計他們的競賽成績,已知這50名學生的競賽成績均在[50,100]內,并得到如下的頻數分布表:分數段[50,60)[60,70)[70,80)[80,90)[90,100]人數51515123(1)將競賽成績在內定義為“合格”,競賽成績在內定義為“不合格”.請將下面的列聯表補充完整,并判斷是否有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關?合格不合格合計高一新生12非高一新生6合計(2)在(1)的前提下,按“競賽成績合格與否”進行分層抽樣,從這50名學生中抽取5名學生,再從這5名學生中隨機抽取2名學生,求這2名學生競賽成績都合格的概率.參考公式及數據:,其中.20.(12分)記拋物線的焦點為,點在拋物線上,且直線的斜率為1,當直線過點時,.(1)求拋物線的方程;(2)若,直線與交于點,,求直線的斜率.21.(12分)在平面直角坐標系xOy中,曲線C的參數方程為(為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為.(1)求曲線C的極坐標方程和直線l的直角坐標方程;(2)若射線與曲線C交于點A(不同于極點O),與直線l交于點B,求的最大值.22.(10分)如圖,點是以為直徑的圓上異于、的一點,直角梯形所在平面與圓所在平面垂直,且,.(1)證明:平面;(2)求點到平面的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.2、C【解析】

將正四面體的展開圖還原為空間幾何體,三點重合,記作,取中點,連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點重合,記作:則為中點,取中點,連接,設正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【點睛】本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應用,屬于中檔題.3、B【解析】

求得直線的方程,聯立直線的方程和雙曲線的方程,求得兩點坐標的關系,根據列方程,化簡后求得離心率.【詳解】設,依題意直線的方程為,代入雙曲線方程并化簡得,故,設焦點坐標為,由于以為直徑的圓經過點,故,即,即,即,兩邊除以得,解得.故,故選B.【點睛】本小題主要考查直線和雙曲線的交點,考查圓的直徑有關的幾何性質,考查運算求解能力,屬于中檔題.4、C【解析】

根據循環結構的程序框圖,帶入依次計算可得輸出為25時的值,進而得判斷框內容.【詳解】根據循環程序框圖可知,則,,,,,此時輸出,因而不符合條件框的內容,但符合條件框內容,結合選項可知C為正確選項,故選:C.【點睛】本題考查了循環結構程序框圖的簡單應用,完善程序框圖,屬于基礎題.5、D【解析】

該題可以看做是圓上的動點到曲線上的動點的距離的平方的最小值問題,可以轉化為圓心到曲線上的動點的距離減去半徑的平方的最值問題,結合圖形,可以斷定那個點應該滿足與圓心的連線與曲線在該點的切線垂直的問題來解決,從而求得切點坐標,即滿足條件的點,代入求得結果.【詳解】由題意可得,其結果應為曲線上的點與以為圓心,以為半徑的圓上的點的距離的平方的最小值,可以求曲線上的點與圓心的距離的最小值,在曲線上取一點,曲線有在點M處的切線的斜率為,從而有,即,整理得,解得,所以點滿足條件,其到圓心的距離為,故其結果為,故選D.【點睛】本題考查函數在一點處切線斜率的應用,考查圓的程,兩條直線垂直的斜率關系,屬中檔題.6、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數量積.【思路點睛】幾何圖形中向量的數量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標運算、數量積及平面幾何知識,又能考查學生的數形結合能力及轉化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結合平面幾何知識及向量數量積的基本概念直接求解(較易);②將條件通過向量的線性運算進行轉化,再利用①求解(較難);③建系,借助向量的坐標運算,此法對解含垂直關系的問題往往有很好效果.7、D【解析】

結合三視圖可知,該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,則上半部分的半個圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運算求解能力,屬于中檔題.8、D【解析】

根據,得到,即,由等比數列的定義知數列是等比數列,然后再利用前n項和公式求.【詳解】因為,所以,所以,所以數列是等比數列,又因為,所以,.故選:D【點睛】本題主要考查等比數列的定義及等比數列的前n項和公式,還考查了運算求解的能力,屬于中檔題.9、A【解析】

基本事件總數,利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率.【詳解】解:從四個陰數和五個陽數中分別隨機選取1個數,基本事件總數,其和等于11包含的基本事件有:,,,,共4個,其和等于的概率.故選:.【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,屬于基礎題.10、D【解析】由題意得,函數點定義域為且,所以定義域關于原點對稱,且,所以函數為奇函數,圖象關于原點對稱,故選D.11、B【解析】

先構造函數,再利用函數奇偶性與單調性化簡不等式,解得結果.【詳解】令,則當時,,又,所以為偶函數,從而等價于,因此選B.【點睛】本題考查利用函數奇偶性與單調性求解不等式,考查綜合分析求解能力,屬中檔題.12、D【解析】

a,b可看成是與和交點的橫坐標,畫出圖象,數形結合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點睛】本題考查利用函數圖象比較大小,考查學生數形結合的思想,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

當時,由,解得,當時,,兩式相減可得,即,可得數列是等比數列再求通項公式.【詳解】當時,,即,當時,,兩式相減可得,即,即,故數列是以為首項,為公比的等比數列,所以.故答案為:【點睛】本題考查數列的前項和與通項公式的關系,還考查運算求解能力以及化歸與轉化思想,屬于基礎題.14、【解析】

利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【詳解】解:直線與圓相切,圓心為由,得或,當時,到直線的距離,不成立,當時,與圓相交于,兩點,到直線的距離,故答案為.【點睛】考查直線與圓的位置關系,相切和相交問題,屬于中檔題.15、【解析】

畫圖直觀圖可得該幾何體為棱錐,再計算高求解體積即可.【詳解】解:如圖,是一個四棱錐的平面展開圖,其中間是邊長為的正方形,上面三角形是等邊三角形,左、右三角形是等腰直角三角形,此四棱錐中,是邊長為的正方形,是邊長為的等邊三角形,故,又,故平面平面,的高是四棱錐的高,此四棱錐的體積為:.故答案為:.【點睛】本題主要考查了四棱錐中的長度計算以及垂直的判定和體積計算等,需要根據題意16、【解析】

求出和的值,利用點斜式可得出所求切線的方程.【詳解】,則,,.因此,函數在處的切線方程是,即.故答案為:.【點睛】本題考查利用導數求函數的切線方程,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)由已知條件列出關于和的方程,并計算出和的值,jike得到橢圓的方程.(2)設出點和點坐標,運用點坐標計算出,分類討論直線的斜率存在和不存在兩種情況,求解出的最小值.【詳解】(1)由己知得:,解得,所以,橢圓的方程(2)設,.當直線垂直于軸時,,且此時,,當直線不垂直于軸時,設直線由,得.,.要使恒成立,只需,即最小值為【點睛】本題考查了求解橢圓方程以及直線與橢圓的位置關系,求解過程中需要分類討論直線的斜率存在和不存在兩種情況,并運用根與系數的關系轉化為只含一個變量的表達式進行求解,需要掌握解題方法,并且有一定的計算量.18、(1)見證明;(2)【解析】

(1)根據面面垂直的性質得到平面,從而得到,利用勾股定理得到,利用線面垂直的判定定理證得平面;(2)設,利用椎體的體積公式求得,利用導數研究函數的單調性,從而求得時,四面體的體積取得最大值,之后利用空間向量求得二面角的余弦值.【詳解】(1)證明:因為,平面平面,平面平面,平面,所以平面,因為平面,所以.因為,所以,所以,因為,所以平面.(2)解:設,則,四面體的體積.,當時,,單調遞增;當時,,單調遞減.故當時,四面體的體積取得最大值.以為坐標原點,建立空間直角坐標系,則,,,,.設平面的法向量為,則,即,令,得,同理可得平面的一個法向量為,則.由圖可知,二面角為銳角,故二面角的余弦值為.【點睛】該題考查的是有關立體幾何的問題,涉及到的知識點有面面垂直的性質,線面垂直的判定,椎體的體積,二面角的求法,在解題的過程中,注意巧用導數求解體積的最大值.19、(1)見解析;(2)【解析】

(1)補充完整的列聯表如下:合格不合格合計高一新生121426非高一新生18624合計302050則的觀測值,所以有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關.(2)抽取的5名學生中競賽成績合格的有名學生,記為,競賽成績不合格的有名學生,記為,從這5名學生中隨機抽取2名學生的基本事件有:,共10種,這2名學生競賽成績都合格的基本事件有:,共3種,所以這2名學生競賽成績都合格的概率為.20、(1)(2)0【解析】

(1)根據題意,設直線,與聯立,得,再由弦長公式,求解.(2)設,根據直線的斜率為1,則,得到,再由,所以線段中點的縱坐標為,然后直線的方程與直線的方程聯立解得交點H的縱坐標,說明直線軸,直線的斜率為0.【詳解】(1)依題意,,則直線,聯立得;設,則,解得,故拋物線的方程為.(2),因為直線的斜率為1,則,所以,因為,所以線段中點的縱坐標為.直線的方程為,即①直線的方程為,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論