湖南省邵東縣十中2025屆高二數學第一學期期末檢測試題含解析_第1頁
湖南省邵東縣十中2025屆高二數學第一學期期末檢測試題含解析_第2頁
湖南省邵東縣十中2025屆高二數學第一學期期末檢測試題含解析_第3頁
湖南省邵東縣十中2025屆高二數學第一學期期末檢測試題含解析_第4頁
湖南省邵東縣十中2025屆高二數學第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省邵東縣十中2025屆高二數學第一學期期末檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點,,直線與線段相交,則實數的取值范圍是()A.或 B.或C. D.2.如圖,四棱錐中,底面是邊長為的正方形,平面,為底面內的一動點,若,則動點的軌跡在()A.圓上 B.雙曲線上C.拋物線上 D.橢圓上3.橢圓的()A.焦點在x軸上,長軸長為2 B.焦點在y軸上,長軸長為2C.焦點在x軸上,長軸長為 D.焦點在y軸上,長軸長為4.已知函數的導函數為,若的圖象如圖所示,則函數的圖象可能是()A. B.C. D.5.在長方體中,,,點分別在棱上,,,則()A. B.C. D.6.已知實數a,b,c滿足,,則a,b,c的大小關系為()A. B.C. D.7.命題若,且,則,命題在中,若,則.下列命題中為真命題的是()A. B.C. D.8.已知函數,若對任意兩個不等的正數,,都有恒成立,則a的取值范圍為()A. B.C. D.9.若等比數列中,,,那么()A.20 B.18C.16 D.1410.已知定義域為R的函數f(x)不是偶函數,則下列命題一定為真命題的是()A.?x∈R,f(-x)≠f(x)B.?x∈R,f(-x)≠-f(x)C?x0∈R,f(-x0)≠f(x0)D.?x0∈R,f(-x0)≠-f(x0)11.過兩點和的直線的斜率為()A. B.C. D.12.如圖,在長方體中,,,則直線和夾角余弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個物體的運動方程為其中位移的單位是米,時間的單位是秒,那么物體在秒末的瞬時速度是__________米/秒14.已知直線l的方向向量,平面的法向量,若,則______15.如果方程表示焦點在軸上的橢圓,那么實數的取值范圍是______.16.已知是等差數列,,,設,數列前n項的和為,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:的離心率為,左、右焦點分別為、,橢圓上的點到左焦點最近的距離為.(1)求橢圓C的方程;(2)若經過點的直線與橢圓C交于M,N兩點,當的面積取得最大值時,求直線的方程.18.(12分)已知圓M的方程為.(1)寫出圓M的圓心坐標和半徑;(2)經過點的直線l被圓M截得弦長為,求l的方程.19.(12分)已知函數,且)的圖象經過點和

.(1)求實數,的值;(2)若,求數列前項和

.20.(12分)正四棱柱的底面邊長為2,側棱長為4.E為棱上的動點,F為棱的中點.(1)證明:;(2)若E為棱上的中點,求直線BE到平面的距離.21.(12分)已知直線過坐標原點,圓的方程為(1)當直線的斜率為時,求與圓相交所得的弦長;(2)設直線與圓交于兩點,,且為的中點,求直線的方程22.(10分)設命題p:實數x滿足,其中;命題q:若,且為真,求實數x的取值范圍;若是的充分不必要條件,求實數m的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由可求出直線過定點,作出圖象,求出和,數形結合可得或,即可求解.【詳解】由可得:,由可得,所以直線:過定點,作出圖象如圖所示:,,若直線與線段相交,則或,所以實數的取值范圍是或,故選:B2、A【解析】根據題意,得到兩兩垂直,以點為坐標原點,分別以為軸,建立空間直角坐標系,設,由題意,得到,,再由得到,求出點的軌跡,即可得出結果.【詳解】由題意,兩兩垂直,以點為坐標原點,分別以為軸,建立如圖所示的空間直角坐標系,因為底面是邊長為的正方形,則,,因為為底面內的一動點,所以可設,因此,,因為平面,所以,因此,所以由得,即,整理得:,表示圓,因此,動點的軌跡在圓上.故選:A.【點睛】本題主要考查立體幾何中的軌跡問題,靈活運用空間向量的方法求解即可,屬于常考題型.3、B【解析】把橢圓方程化為標準方程可判斷焦點位置和求出長軸長.【詳解】橢圓化為標準方程為,所以,且,所以橢圓焦點在軸上,,長軸長為.故選:B.4、D【解析】根據導函數大于,原函數單調遞增;導函數小于,原函數單調遞減;即可得出正確答案.【詳解】由導函數得圖象可得:時,,所以單調遞減,排除選項A、B,當時,先正后負,所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.5、D【解析】依題意可得,從而得到,即可得到,從而得解;【詳解】解:由長方體的性質可得,又,所以,因為,所以,所以,因為,所以;故選:D6、A【解析】利用對數的性質可得,,再構造函數,利用導數判斷,再構造,利用導數判斷出函數的單調性,再由單調性即可求解.【詳解】由題意可得均大于,因為,所以,所以,且,令,,當時,,所以在單調遞增,所以,所以,即,令,,當時,,所以在上單調遞減,由,,所以,所以,綜上所述,.故選:A7、A【解析】根據不等式性質及對數函數的單調性判斷命題的真假,根據大角對大邊及正弦定理可判斷命題的真假,再根據復合命題真假的判斷方法即可得出結論.【詳解】解:若,且,則,當時,,所以,當時,,所以,綜上命題為假命題,則為真命題,在中,若,則,由正弦定理得,所以命題為真命題,為假命題,所以為真命題,,,為假命題.故選:A.8、A【解析】將已知條件轉化為時恒成立,利用參數分離的方法求出a的取值范圍【詳解】對任意都有恒成立,則時,,當時恒成立,

,當時恒成立,,故選:A9、B【解析】利用等比數列的基本量進行計算即可【詳解】設等比數列的公比為,則,所以故選:B10、C【解析】利用偶函數的定義和全稱命題的否定分析判斷解答.【詳解】∵定義域為R的函數f(x)不是偶函數,∴?x∈R,f(-x)=f(x)為假命題,∴?x0∈R,f(-x0)≠f(x0)為真命題.故選C【點睛】本題主要考查偶函數的定義和全稱命題的否定,意在考查學生對該知識的理解掌握水平,屬于基礎題.11、D【解析】應用兩點式求直線斜率即可.【詳解】由已知坐標,直線的斜率為.故選:D12、D【解析】如圖建立空間直角坐標系,分別求出的坐標,由空間向量夾角公式即可求解.【詳解】如圖:以為原點,分別以,,所在的直線為,,軸建立空間直角坐標系,則,,,,所以,,所以,所以直線和夾角的余弦值為,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】,14、【解析】由,可得∥,從而可得,代入坐標列方程可求出,從而可求出【詳解】因為直線l的方向向量,平面的法向量,,所以∥,所以存在唯一實數,使,所以,所以,解得,所以,故答案為:15、【解析】化簡橢圓的方程為標準形式,列出不等式,即可求解.【詳解】由題意,方程可化為,因為方程表示焦點在軸上的橢圓,可得,解得,實數的取值范圍是.故答案為:.16、-3033【解析】先求得,進而得到,再利用并項法求解.【詳解】解:因為是等差數列,且,,所以,解得,所以,則,所以,,,,.故答案為:-3033三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據題意得,,進而解方程即可得答案;(2)根據題意設直線的方程,,,進而,再聯立方程,結合韋達定理求解即可.【小問1詳解】解:因為橢圓C:的離心率為,所以,因為橢圓上的點到左焦點最近的距離為,所以所以,所以橢圓C的方程為.【小問2詳解】解:根據題意,設直線的方程,,設,聯立方程得,所以,解得或.,所以的面積為令,則,當且僅當,即時,等號成立.所以當的面積取得最大值時,直線的方程為.18、(1)圓心坐標為,半徑為2(2)或【解析】(1)求得圓的標準方程,從而求得圓心和半徑.(2)根據直線的斜率存在和不存在進行分類討論,由此求得的方程.【小問1詳解】圓的標準方程為:.所以圓M的圓心坐標為,半徑為2.【小問2詳解】因為圓M半徑為2,直線l被圓M截得弦長為,由垂徑定理可知M到直線距離為1.當l不垂直于軸時,設,即,則.解得,于是l的方程為,即.當l垂直于軸時,到點M的距離為1.綜上,l的方程為,或.19、(1),(2)【解析】(1)將A、B點坐標代入,計算求解,即可得答案.(2)由(1)可得解析式,即可得,利用分組求和法,結合等比數列的求和公式,即可得答案.【小問1詳解】由已知,可得,所以,解得,

.【小問2詳解】由(1)得,又,所以,故

.20、(1)證明見解析;(2).【解析】(1)根據給定條件建立空間直角坐標系,利用空間位置關系的向量證明計算作答.(2)利用(1)中坐標系,證明平面,再求點B到平面的距離即可作答.【小問1詳解】在正四棱柱中,以點D為原點,射線分別為x,y,z軸非負半軸建立空間直角坐標系,如圖,則,因E為棱上的動點,則設,,而,,即,所以.【小問2詳解】由(1)知,點,,,,設平面的一個法向量,則,令,得,顯然有,則,而平面,因此,平面,于是有直線BE到平面的距離等于點B到平面的距離,所以直線BE到平面的距離是.21、(1)(2)或【解析】(1)、由題意可知直線的方程為,圓的圓心為,半徑為,求出圓心到直線的距離,根據勾股定理即可求出與圓相交所得的弦長;(2)、設,因為為的中點,所以,又因為,均在圓上,將,坐標代入圓方程,即可求出點坐標,即可求出直線的方程【小問1詳解】由題意:直線過坐標原點,且直線的斜率為直線的方程為,圓的方程為圓的方程可化為:圓的圓心為,半徑為圓的圓心到直線:的距離為,與圓相交所得的弦長為【小問2詳解】設,為的中點,又,均在圓上,或直線方程或22、(1)(2)【解析】解二次不等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論