




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省商南縣2023-2024學年初中數學畢業考試模擬沖刺卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°2.﹣的相反數是()A.8 B.﹣8 C. D.﹣3.若順次連接四邊形各邊中點所得的四邊形是菱形,則四邊形一定是()A.矩形 B.菱形C.對角線互相垂直的四邊形 D.對角線相等的四邊形4.分式方程的解為()A.x=-2 B.x=-3 C.x=2 D.x=35.已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE,過點A作AE的垂線交DE于點P,若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤6.若⊙O的半徑為5cm,OA=4cm,則點A與⊙O的位置關系是()A.點A在⊙O內 B.點A在⊙O上 C.點A在⊙O外 D.內含7.如圖,△ABC為直角三角形,∠C=90°,BC=2cm,∠A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設Rt△ABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2與xs之間函數關系的大致圖象是()A. B. C. D.8.下列運算正確的是()A.3a2﹣2a2=1 B.a2?a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b29.為了節約水資源,某市準備按照居民家庭年用水量實行階梯水價,水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m1),繪制了統計圖,如圖所示.下面有四個推斷:①年用水量不超過180m1的該市居民家庭按第一檔水價交費;②年用水量不超過240m1的該市居民家庭按第三檔水價交費;③該市居民家庭年用水量的中位數在150~180m1之間;④該市居民家庭年用水量的眾數約為110m1.其中合理的是()A.①③ B.①④ C.②③ D.②④10.如圖,是由一個圓柱體和一個長方體組成的幾何體,其主視圖是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形紙片ABCD中,AB=2cm,點E在BC上,且AE=CE.若將紙片沿AE折疊,點B恰好與AC上的點B1重合,則AC=_____cm.12.不等式組有2個整數解,則m的取值范圍是_____.13.方程=1的解是___.14.把球放在長方體紙盒內,球的一部分露出盒外,其截面如圖,已知EF=CD=80cm,則截面圓的半徑為cm.15.學校乒乓球社團有4名男隊員和3名女隊員,要從這7名隊員中隨機抽取一男一女組成一隊混合雙打組合,可組成不同的組合共有_____對.16.如圖,在Rt△ABC中,∠ACB=90°,點D、E、F分別是AB、AC、BC的中點,若CD=5,則EF的長為________.17.已知一塊等腰三角形鋼板的底邊長為60cm,腰長為50cm,能從這塊鋼板上截得得最大圓得半徑為________cm三、解答題(共7小題,滿分69分)18.(10分)某校為了創建書香校遠,計劃進一批圖書,經了解.文學書的單價比科普書的單價少20元,用800元購進的文學書本數與用1200元購進的科普書本數相等.文學書和科普書的單價分別是多少元?該校計劃用不超過5000元的費用購進一批文學書和科普書,問購進60本文學書后最多還能購進多少本科普書?19.(5分)已知二次函數y=x2-4x-5,與y軸的交點為P,與x軸交于A、B兩點.(點B在點A的右側)(1)當y=0時,求x的值.(2)點M(6,m)在二次函數y=x2-4x-5的圖像上,設直線MP與x軸交于點C,求cot∠MCB的值.20.(8分)如圖,一條公路的兩側互相平行,某課外興趣小組在公路一側AE的點A處測得公路對面的點C與AE的夾角∠CAE=30°,沿著AE方向前進15米到點B處測得∠CBE=45°,求公路的寬度.(結果精確到0.1米,參考數據:≈1.73)21.(10分)某商場用24000元購入一批空調,然后以每臺3000元的價格銷售,因天氣炎熱,空調很快售完,商場又以52000元的價格再次購入該種型號的空調,數量是第一次購入的2倍,但購入的單價上調了200元,每臺的售價也上調了200元.商場第一次購入的空調每臺進價是多少元?商場既要盡快售完第二次購入的空調,又要在這兩次空調銷售中獲得的利潤率不低于22%,打算將第二次購入的部分空調按每臺九五折出售,最多可將多少臺空調打折出售?22.(10分)如圖,一盞路燈沿燈罩邊緣射出的光線與地面BC交于點B、C,測得∠ABC=45°,∠ACB=30°,且BC=20米.(1)請用圓規和直尺畫出路燈A到地面BC的距離AD;(不要求寫出畫法,但要保留作圖痕跡)(2)求出路燈A離地面的高度AD.(精確到0.1米)(參考數據:≈1.414,≈1.732).23.(12分)如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D,E是AB延長線上一點,CE交⊙O于點F,連接OC、AC.(1)求證:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度數;②若⊙O的半徑為2,求線段EF的長.24.(14分)“校園安全”受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面兩幅尚不完整的統計圖,請根據統計圖中所提供的信息解答下列問題:接受問卷調查的學生共有人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為度;請補全條形統計圖;若該中學共有學生900人,請根據上述調查結果,估計該中學學生中對校園安全知識達到“了解”和“基本了解”程度的總人數.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.2、C【解析】互為相反數的兩個數是指只有符號不同的兩個數,所以的相反數是,故選C.3、C【解析】【分析】如圖,根據三角形的中位線定理得到EH∥FG,EH=FG,EF=BD,則可得四邊形EFGH是平行四邊形,若平行四邊形EFGH是菱形,則可有EF=EH,由此即可得到答案.【點睛】如圖,∵E,F,G,H分別是邊AD,DC,CB,AB的中點,∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,∴EH∥FG,EH=FG,∴四邊形EFGH是平行四邊形,假設AC=BD,∵EH=AC,EF=BD,則EF=EH,∴平行四邊形EFGH是菱形,即只有具備AC=BD即可推出四邊形是菱形,故選D.【點睛】本題考查了中點四邊形,涉及到菱形的判定,三角形的中位線定理,平行四邊形的判定等知識,熟練掌握和靈活運用相關性質進行推理是解此題的關鍵.4、B【解析】解:去分母得:2x=x﹣3,解得:x=﹣3,經檢驗x=﹣3是分式方程的解.故選B.5、D【解析】
①首先利用已知條件根據邊角邊可以證明△APD≌△AEB;
②由①可得∠BEP=90°,故BE不垂直于AE過點B作BF⊥AE延長線于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直線AE距離為BF=,故②是錯誤的;
③利用全等三角形的性質和對頂角相等即可判定③說法正確;
④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知條件計算即可判定;
⑤連接BD,根據三角形的面積公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【詳解】由邊角邊定理易知△APD≌△AEB,故①正確;
由△APD≌△AEB得,∠AEP=∠APE=45°,從而∠APD=∠AEB=135°,
所以∠BEP=90°,
過B作BF⊥AE,交AE的延長線于F,則BF的長是點B到直線AE的距離,
在△AEP中,由勾股定理得PE=,
在△BEP中,PB=,PE=,由勾股定理得:BE=,
∵∠PAE=∠PEB=∠EFB=90°,AE=AP,
∴∠AEP=45°,
∴∠BEF=180°-45°-90°=45°,
∴∠EBF=45°,
∴EF=BF,
在△EFB中,由勾股定理得:EF=BF=,
故②是錯誤的;
因為△APD≌△AEB,所以∠ADP=∠ABE,而對頂角相等,所以③是正確的;
由△APD≌△AEB,
∴PD=BE=,
可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是錯誤的;
連接BD,則S△BPD=PD×BE=,
所以S△ABD=S△APD+S△APB+S△BPD=2+,
所以S正方形ABCD=2S△ABD=4+.
綜上可知,正確的有①③⑤.故選D.【點睛】考查了正方形的性質、全等三角形的性質與判定、三角形的面積及勾股定理,綜合性比較強,解題時要求熟練掌握相關的基礎知識才能很好解決問題.6、A【解析】
直接利用點與圓的位置關系進而得出答案.【詳解】解:∵⊙O的半徑為5cm,OA=4cm,∴點A與⊙O的位置關系是:點A在⊙O內.故選A.【點睛】此題主要考查了點與圓的位置關系,正確①點P在圓外?d>r,②點P在圓上?d=r,③點P在圓內?d<r是解題關鍵.7、A【解析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四邊形DEFG為矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此題有三種情況:(1)當0<x<2時,AB交DE于H,如圖∵DE∥AC,∴,即,解得:EH=x,所以y=?x?x=x2,∵x、y之間是二次函數,所以所選答案C錯誤,答案D錯誤,∵a=>0,開口向上;(2)當2≤x≤6時,如圖,此時y=×2×2=2,(3)當6<x≤8時,如圖,設△ABC的面積是s1,△FNB的面積是s2,BF=x﹣6,與(1)類同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x2+6x﹣16,∵﹣<0,∴開口向下,所以答案A正確,答案B錯誤,故選A.點睛:本題考查函數的圖象.在運動的過程中正確區分函數圖象是解題的關鍵.8、D【解析】
根據合并同類項法則,可知3a2﹣2a2=a2,故不正確;根據同底數冪相乘,可知a2?a3=a5,故不正確;根據完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正確;根據完全平方公式,可知(a+b)2=a2+2ab+b2,正確.故選D.【詳解】請在此輸入詳解!9、B【解析】
利用條形統計圖結合中位數和中位數的定義分別分析得出答案.【詳解】①由條形統計圖可得:年用水量不超過180m1的該市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(萬),
×100%=80%,故年用水量不超過180m1的該市居民家庭按第一檔水價交費,正確;
②∵年用水量超過240m1的該市居民家庭有(0.15+0.15+0.05)=0.15(萬),
∴×100%=7%≠5%,故年用水量超過240m1的該市居民家庭按第三檔水價交費,故此選項錯誤;
③∵5萬個數據的中間是第25000和25001的平均數,
∴該市居民家庭年用水量的中位數在120-150之間,故此選項錯誤;
④該市居民家庭年用水量為110m1有1.5萬戶,戶數最多,該市居民家庭年用水量的眾數約為110m1,因此正確,
故選B.【點睛】此題主要考查了頻數分布直方圖以及中位數和眾數的定義,正確利用條形統計圖獲取正確信息是解題關鍵.10、B【解析】試題分析:長方體的主視圖為矩形,圓柱的主視圖為矩形,根據立體圖形可得:主視圖的上面和下面各為一個矩形,且下面矩形的長比上面矩形的長要長一點,兩個矩形的寬一樣大小.考點:三視圖.二、填空題(共7小題,每小題3分,滿分21分)11、4【解析】
∵AB=2cm,AB=AB1,∴AB1=2cm,∵四邊形ABCD是矩形,AE=CE,∴∠ABE=∠AB1E=90°∵AE=CE∴AB1=B1C∴AC=4cm.12、1<m≤2【解析】
首先根據不等式恰好有個整數解求出不等式組的解集為,再確定.【詳解】不等式組有個整數解,其整數解有、這個,.故答案為:.【點睛】此題主要考查了解不等式組,關鍵是正確理解解集的規律:同大取大,同小取小,大小小大中間找,大大小小找不到.13、x=﹣4【解析】
分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解.【詳解】去分母得:3+2x=x﹣1,解得:x=﹣4,經檢驗x=﹣4是分式方程的解.【點睛】此題考查了解分式方程,利用了轉化的思想,解分式方程注意要檢驗.14、1【解析】
過點O作OM⊥EF于點M,反向延長OM交BC于點N,連接OF,設OF=r,則OM=80-r,MF=40,然后在Rt△MOF中利用勾股定理求得OF的長即可.【詳解】過點O作OM⊥EF于點M,反向延長OM交BC于點N,連接OF,設OF=x,則OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案為1.15、1【解析】
利用樹狀圖展示所有1種等可能的結果數.【詳解】解:畫樹狀圖為:
共有1種等可能的結果數.
故答案為1.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.16、5【解析】
已知CD是Rt△ABC斜邊AB的中線,那么AB=2CD;EF是△ABC的中位線,則EF應等于AB的一半.【詳解】∵△ABC是直角三角形,CD是斜邊的中線,∴CD=AB,又∵EF是△ABC的中位線,∴AB=2CD=2×5=10,∴EF=×10=5.故答案為5.【點睛】本題主要考查三角形中位線定理,直角三角形斜邊上的中線,熟悉掌握是關鍵.17、15【解析】如圖,等腰△ABC的內切圓⊙O是能從這塊鋼板上截得的最大圓,則由題意可知:AD和BF是△ABC的角平分線,AB=AC=50cm,BC=60cm,∴∠ADB=90°,BD=CD=30cm,∴AD=(cm),連接圓心O和切點E,則∠BEO=90°,又∵OD=OE,OB=OB,∴△BEO≌△BDO,∴BE=BD=30cm,∴AE=AB-BE=50-30=20cm,設OD=OE=x,則AO=40-x,在Rt△AOE中,由勾股定理可得:,解得:(cm).即能截得的最大圓的半徑為15cm.故答案為:15.點睛:(1)三角形中能夠裁剪出的最大的圓是這個三角形的內切圓;(2)若三角形的三邊長分別為a、b、c,面積為S,內切圓的半徑為r,則.三、解答題(共7小題,滿分69分)18、(1)文學書的單價為40元/本,科普書的單價為1元/本;(2)購進1本文學書后最多還能購進2本科普書.【解析】
(1)設文學書的單價為x元/本,則科普書的單價為(x+20)元/本,根據數量=總價÷單價結合用800元購進的文學書本數與用1200元購進的科普書本數相等,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設購進m本科普書,根據總價=文學書的單價×購進本數+科普書的單價×購進本數結合總價不超過5000元,即可得出關于m的一元一次不等式,解之取其中的最大整數值即可得出結論.【詳解】解:(1)設文學書的單價為x元/本,則科普書的單價為(x+20)元/本,依題意,得:800x解得:x=40,經檢驗,x=40是原分式方程的解,且符合題意,∴x+20=1.答:文學書的單價為40元/本,科普書的單價為1元/本.(2)設購進m本科普書,依題意,得:40×1+1m≤5000,解得:m≤431∵m為整數,∴m的最大值為2.答:購進1本文學書后最多還能購進2本科普書.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據各數量之間的關系,正確列出一元一次不等式.19、(1),;(2)【解析】
(1)當y=0,則x2-4x-5=0,解方程即可得到x的值.(2)由題意易求M,P點坐標,再求出MP的直線方程,可得cot∠MCB.【詳解】(1)把代入函數解析式得,即,解得:,.(2)把代入得,即得,∵二次函數,與軸的交點為,∴點坐標為.設直線的解析式為,代入,得解得,∴,∴點坐標為,在中,又∵∴.【點睛】本題考查的知識點是拋物線與x軸的交點,二次函數的性質,解題的關鍵是熟練的掌握拋物線與x軸的交點,二次函數的性質.20、公路的寬為20.5米.【解析】
作CD⊥AE,設CD=x米,由∠CBD=45°知BD=CD=x,根據tan∠CAD=,可得=,解之即可.【詳解】解:如圖,過點C作CD⊥AE于點D,設公路的寬CD=x米,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠CAE=30°,∴tan∠CAD==,即=,解得:x=≈20.5(米),答:公路的寬為20.5米.【點睛】本題考查了直角三角形的應用,解答本題的關鍵是根據仰角構造直角三角形,利用三角函數解直角三角形.21、(1)2400元;(2)8臺.【解析】試題分析:(1)設商場第一次購入的空調每臺進價是x元,根據題目條件“商場又以52000元的價格再次購入該種型號的空調,數量是第一次購入的2倍,但購入的單價上調了200元,每臺的售價也上調了200元”列出分式方程解答即可;
(2)設最多將臺空調打折出售,根據題目條件“在這兩次空調銷售中獲得的利潤率不低于22%,打算將第二次購入的部分空調按每臺九五折出售”列出不等式并解答即可.試題解析:(1)設第一次購入的空調每臺進價是x元,依題意,得解得經檢驗,是原方程的解.答:第一次購入的空調每臺進價是2400元.(2)由(1)知第一次購入空調的臺數為24000÷2400=10(臺),第二次購入空調的臺數為10×2=20(臺).設第二次將y臺空調打折出售,由題意,得解得答:最多可將8臺空調打折出售.22、(1)見解析;(2)是7.3米【解析】
(1)圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)在△ABD中,DB=AD;在△ACD中,CD=AD,BC=BD+CD,由此可以建立關于AD的方程,解方程求解.【詳解】解:(1)如下圖,圖1,先以A為圓心,大于A到BC的距離為半徑畫弧交BC與EF兩點,然后分別以E、F為圓心畫弧,交點為G,連接AG,與BC交點點D,則AD⊥BC;圖2,分別以B、C為圓心,BA為半徑畫弧,交于點G,連接AG,與BC交點點D,則AD⊥BC;(2)設AD=x,在Rt△ABD中,∠ABD=45°,∴BD=AD=x,∴CD=20﹣x.∵tan∠ACD=,即tan30°=,∴x==10(﹣1)≈7.3(米).答:路燈A離地面的高度AD約是7.3米.【點睛】解此題關鍵是把實際問題轉化為數學問題,把實際問題抽象到解直角三角形中,利用三角函數解答即可.23、(1)證明見解析;(2)①∠OCE=45°;②EF=-2.【解析】【試題分析】(1)根據直線與⊙O相切的性質,得OC⊥CD.又因為AD⊥CD,根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小產權3方合同協議
- 小區電梯屋出租合同協議
- 工廠簽約小時工合同協議
- 工廠木門訂購合同協議
- 小賣部用工合同協議
- 小區道路設計合同協議
- 小區維修窗戶合同協議
- 對公協議存款合同協議
- 小產權土地轉讓合同協議
- 山東省房屋合同協議
- 2024年世界職業院校技能大賽高職組“市政管線(道)數字化施工組”賽項考試題庫
- 樁基及基坑支護工程技術施工方案(三篇)
- 司法考試2024年知識點背誦版-民法
- 2024年耐磨鑄件項目規劃申請報告樣文
- 重度哮喘診斷與處理中國專家共識(2024)解讀
- 新能源汽車電控系統的新型傳感器應用考核試卷
- 蘇教版數學一年級下學期期中測試卷10套及但
- 2024年全國職業院校技能大賽高職組(法律實務賽項)考試題庫(含答案)
- 全過程工程咨詢管理服務方案投標方案(技術方案)
- 中鐵十五局集團安全質量部管理制度大全
- 2024老年燒創傷創面MEEK植皮技術規范
評論
0/150
提交評論