專題3.3代數式(章節復習能力強化卷)教師版_第1頁
專題3.3代數式(章節復習能力強化卷)教師版_第2頁
專題3.3代數式(章節復習能力強化卷)教師版_第3頁
專題3.3代數式(章節復習能力強化卷)教師版_第4頁
專題3.3代數式(章節復習能力強化卷)教師版_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

20232024學年蘇科版數學七年級上冊同步專題熱點難點專項練習專題3.3代數式(章節復習+能力強化卷)知識點01:代數式如:16n,2a+3b,34,,等式子,它們都是用運算符號(+、-、×、÷、乘方、開方)把數和表示數的字母連接而成的,像這樣的式子叫做代數式,單獨的一個數或一個字母也是代數式.知識要點:代數式的書寫規范:(1)字母與數字或字母與字母相乘時,通常把乘號寫成“·”或省略不寫;(2)除法運算一般以分數的形式表示;(3)字母與數字相乘時,通常把數字寫在字母的前面;(4)字母前面的數字是分數的,如果既能寫成帶分數又能寫成假分數,一般寫成假分數的形式;(5)如果字母前面的數字是1,通常省略不寫.知識點02:整式的相關概念1.單項式:由數與字母的乘積組成的代數式叫做單項式,單獨的一個數或一個字母也是單項式.知識要點:(1)單項式的系數是指單項式中的數字因數.(2)單項式的次數是指單項式中所有字母的指數和.2.多項式:幾個單項式的和叫做多項式.在多項式中,每個單項式叫做多項式的項.知識要點:(1)在多項式中,不含字母的項叫做常數項.(2)多項式中次數最高的項的次數,就是這個多項式的次數.(3)多項式的次數是n次,有m個單項式,我們就把這個多項式稱為n次m項式.3.多項式的降冪與升冪排列:

把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把這個多項式按這個字母降冪排列.另外,把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把這個多項式按這個字母升冪排列.知識要點:(1)利用加法交換律重新排列時,各項應連同它的符號一起移動位置;

(2)含有多個字母時,只按給定的字母進行降冪或升冪排列.4.整式:單項式和多項式統稱為整式.知識點03:整式的加減1.同類項:所含字母相同,并且相同字母的指數也相同的項叫做同類項.所有的常數項都是同類項.知識要點:辨別同類項要把準“兩相同,兩無關”:(1)“兩相同”是指:①所含字母相同;②相同字母的指數相同;(2)“兩無關”是指:①與系數無關;②與字母的排列順序無關.2.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項.知識要點:合并同類項時,只是系數相加減,所得結果作為系數,字母及字母的指數保持不變.3.去括號法則:括號前面是“+”,把括號和它前面的“+”去掉后,原括號里各項的符號都不改變;括號前面是“”,把括號和它前面的“”號去掉后,原括號里各項的符號都要改變.4.添括號法則:添括號后,括號前面是“+”,括號內各項的符號都不改變;添括號后,括號前面是“”,括號內各項的符號都要改變.5.整式的加減運算法則:幾個整式相加減,通常用括號把每一個整式括起來,再用加、減號連接,然后去括號,合并同類項.一、選擇題(共10題;每題2分,共20分)1.(2分)(2023七上·龍華期末)某種商品進價為a元,在銷售旺季,提價30%銷售,旺季過后,商品以7折價格開展促銷活動,這時一件商品的售價為()A.a B.0.7a C.1.03a D.0.91a【答案】D【規范解答】解:這時商品的售價為(元),故答案為:D.【思路點撥】由題意可得:售價為(1+30%)a,然后乘以70%可得打折后的售價.2.(2分)(2023七上·蒼南期末)圖1是由3個相同小長方形拼成的圖形其周長為24,圖2中的長方形內放置10個相同的小長方形,則長方形的周長為()A. B. C. D.【答案】C【規范解答】解:設小長方形的長為x,寬為y,由圖1得:,∴,由圖2得:長方形ABCD的長AB表示為:,寬AD表示為,∴周長為:故答案為:C.【思路點撥】設小長方形的長為x,寬為y,利用平移的思想,結合圖1可得4x+4y=24,即x+y=6;結合圖2,用含x、y的式子表示出AB、AD、進而根據矩形的周長計算方法列出式子,根據整式加減法化簡后再整體代入計算即可.3.(2分)(2023七上·洛川期末)已知,,則代數式的值為A.38 B.35 C.35 D.32【答案】C【規范解答】解:,當,時,原式.故答案為:C.【思路點撥】根據去括號、合并同類項法則即可將代數式變形為3(4m3n)2(x+2y)+3,然后將已知條件代入進行計算.4.(2分)(2022七上·趙縣期末)嘉琪在進行解方程的思維訓練,其中有一個方程“2y=y+■”中的■沒印清晰,嘉琪問老師,老師只是說:“■是一個有理數,該方程的解與當×=2時代數式5(x1)2(x2)4的值相同.”嘉琪很快補上了這個有理數.你認為嘉琪補的這個有理數是()A.1 B.1 C.2 D.2【答案】A【規范解答】當x=2時代數式5(x﹣1)﹣2(x﹣2)﹣4

=5x﹣5﹣2x+4﹣4

=3x﹣5

=3×2﹣5

=1,

即y=1,

代入方程中,即可得出補的這個有理數是1

故答案為:A

【思路點撥】先去括號,再合并同類項,得到化簡后的結果,再把a=1,b=﹣2代入化簡后的代數式進行計算即可.5.(2分)(2023七上·洛川期末)已知x+2y=7,4m﹣3n=8,則代數式(9n﹣4y)﹣2(6m+x)+3的值為()A.38 B.35 C.﹣35 D.﹣32【答案】C【規范解答】解:∵x+2y=7,4m3n=8,

∴(9n4y)2(6m+x)+3=9n4y12m2x+3=2(x+2y)3(4m3n)+3=2×73×8+3=1424+3=35.

故答案為:C.

【思路點撥】待求式可變形為2(x+2y)3(4m3n)+3,然后將已知條件代入進行計算.6.(2分)(2023七上·澄城期末)下面四個整式中,不能表示圖中陰影部分面積的是()A. B.C. D.【答案】C【規范解答】解:陰影部分的面積可以表示為:(x+3)(x+2)2x=x2+3x+6,故A不符合題意;

或表示為x(x+3)+2×3=x(x+3)+6,故B不符合題意;

或表示出為3(x+2)+x2,故D不符合題意;

∵x2+3x+6≠x2+5x,故C符合題意;

故答案為:C

【思路點撥】利用圖形中的數據,可知陰影部分的面積可表示為(x+3)(x+2)2x=x(x+3)+2×3=3(x+2)+x2,據此可得到不符合題意的選項.7.(2分)(2022七上·南寧月考)按如圖所示的運算程序,若開始輸入x的值為343,則第2022次輸出的結果為()A.343 B.1 C.7 D.49【答案】C【規范解答】解:由圖所示的運算程序可知:

第1次輸入x=343≠1,輸出49,

第2次輸入x=49≠1,輸出7,

第3次輸入x=7≠1,輸出1,

第4次輸入x=1,輸出7,

第5次輸入x=7≠1,輸出1,

第6次輸入x=1,輸出7,

∴第2022次輸出為7,

故答案為:C.

【思路點撥】根據給定的運算程序從輸入343開始,找出輸出的規律,即可確定第2022次輸出的結果.8.(2分)(2021七上·奉化期末)已知長方形ABCD,,,將兩張邊長分別為a和b()的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),矩形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設圖1中陰影部分的面積為,圖2中陰影部分的面積為.當時,AB的值是()A.7 B.8 C.9 D.10【答案】A【規范解答】解:S1=(ABa)?a+(CDb)(ADa)=(ABa)?a+(ABb)(ADa),S2=AB(ADa)+(ab)(ABa),∴S2S1=AB(ADa)+(ab)(ABa)(ABa)?a(ABb)(ADa)=(ADa)(ABAB+b)+(ABa)(aba)=b?ADabb?AB+ab=b(ADAB),∵S2S1=3b,AD=10,∴b(10AB)=3b,∴AB=7.故選:A.

【思路點撥】利用面積的和差關系,分別表示出S1和S2,再表示出S2S1=b(ADAB),結合S2S1=3b,AD=10即可求解.9.(2分)(2021七上·普寧期中)如圖所示,在這個數據運算程序中,如果開始輸入的x的值為10,那么第1次輸出的結果是5,返回進行第二次運算,那么第2次輸出的結果是16,……以此類推,第204次輸出的結果是()A.1 B.2 C.4 D.5【答案】A【規范解答】解:由數據運算程序得,如果開始輸入的x的值為10,那么:第1次輸出的結果是5第2次輸出的結果是16第3次輸出的結果是8第4次輸出的結果是4第5次輸出的結果是2第6次輸出的結果是1第7次輸出的結果是4……綜上可得,從第4次開始,每三個一循環由可得第204次輸出的結果與第6次輸出的結果相等故答案為:A【思路點撥】先找出規律:從第4次開始,每三個一循環,進行計算求解即可。10.(2分)(2022·寧波模擬)將四張邊長各不相同的正方形紙片按如圖方式放入矩形內(相鄰紙片之間互不重疊也無縫隙),未被四張正方形紙片覆蓋的部分用陰影表示.設右上角與左下角陰影部分的周長的差為.若知道的值,則不需測量就能知道周長的正方形的標號為()A.① B.② C.③ D.④【答案】D【規范解答】解:設①、②、③、④四個正方形的邊長分別為a、b、c、d,由題意得,(a+d?b?c+b+a+d?b+b?c+c+c)?(a?d+a?d+d+d)=l,整理得,2d=l,則知道l的值,則不需測量就能知道正方形④的周長,故答案為:D.【思路點撥】設①、②、③、④四個正方形的邊長分別為a、b、c、d,右上角陰影部分的周長=a+d?b?c+b+a+d?b+b?c+c+c,左下角陰影部分的周長=a?d+a?d+d+d,根據兩陰影周長差為l建立方程,求解即可.二、填空題(共10題;每題2分,共20分)11.(2分)(2023七上·杭州期末)單項式的系數是;次數是.【答案】;3【規范解答】解:①由題意可知單項式的系數為,故答案為:.②由題意可知單項式的次數為故答案為:3.【思路點撥】單項式的次數:所有字母的指數之和叫做這個單項式的次數;單項式的系數:單項式中的數字因數叫做這個單項式的系數.12.(2分)(2023七上·江北期末)若,則的值是.【答案】0【規范解答】解:∵,∴,故答案為:0.【思路點撥】利用添括號法則,將待求式子含字母的部分放到一個前面帶負號的括號內,進而整體代入計算即可.13.(2分)(2023七上·蘭溪期末)如圖所示,一塊磚的外墻面積為x,那么圖中殘缺墻面的面積為.【答案】【規范解答】解:圖中殘缺墻面的面積為故答案為:.【思路點撥】由圖形可得:殘缺墻面的面積=三塊磚的外墻面積+半塊磚的外墻面積,然后結合一塊磚的外墻面積為x進行解答.14.(2分)(2023七上·慈溪期末)已知,,則.【答案】3【規范解答】解:∵,,∴.故答案為:3.【思路點撥】待求式可變形為2(x2+2xy)(y2+xy),據此進行計算.15.(2分)(2023七上·義烏期末)有一個長方體水箱,從里面量得它的深度為,底面長為,寬為,水箱里已盛有深度為的水.若往水箱里放入一個棱長為的立方體鐵塊,則水箱的水深為.【答案】10或30或a+2或1.25a【規范解答】解:當放入立方體鐵塊后,水面剛好與立方體鐵塊相平時,由題意,得,∴,

∴水深為10cm;當放入立方體鐵塊后,水面剛好與水箱頂部相平時,由題意,得,∴;∴當時,水深為30cm;當時,設此時水深為,由題意,得,∴;當時,設此時水深為,由題意,得,∴,綜上所述,水箱的水深為30或a+2或1.25a.故答案為:10或30或a+2或1.25a.【思路點撥】分類討論:①當放入立方體鐵塊后,水面剛好與立方體鐵塊相平時,根據水箱的長×寬×鐵塊的棱長=水箱原來水的體積+放入的立方體鐵塊的體積建立方程,求解可得a的值;②當放入立方體鐵塊后,水面剛好與水箱頂部相平時根據水箱的長×寬×鐵塊的棱長=水箱原來水的體積+放入的立方體鐵塊的體積建立方程,求解可得a的值;根據水箱容積=水箱原來水的體積+放入的立方體鐵塊的體積建立方程,求解可得a的值,當a≥28時,水深30cm,③當8≤a≤28時,設此時水深為xcm,根據根據水箱的長×寬×現在水的深度=水箱原來水的體積+放入的立方體鐵塊的體積建立方程,求解可表示出x;④當a<8時,設此時水深為ycm,根據現在鐵塊沒入水的體積+原來水箱中水的體積=水箱的長×寬×現在液面的高度建立方程,求解可表示出y,綜上即可得出答案.16.(2分)(2021七上·安吉期末)《孫子算經》是中國古代時期重要的數學專著,其中包含了“雞兔同籠”“物不知數”等許多有趣的數學問題.《孫子算經》中記載:“今有物不知數,三三數之剩二,五五數之剩三,七七數之剩二,問物幾何?”其譯文為:“有一個正整數,除以3余2,除以5余3,除以7余2,求符合條件的正整數.”請用含k(k為自然數)的代數式表示滿足條件的所有正整數.【答案】105k+23【規范解答】解:∵一個正整數,除以3余2,除以7也余2

∴這個正整數除以21也余2

∵除以21余2的最小正整數是23

∴滿足條件的最小正整數為23

∵3、5、7的最小公倍數為3×5×7=105

∴滿足條件的所有正整數可以表示為:105k+23

故答案為:105k+23。

【思路點撥】根據余同先求出除以21余2的最小正整數,再求出除以5余3的最小正整數,最后利用最小公倍數將所有正整數用代數式表示出來。17.(2分)(2021七上·深圳期中)數學真奇妙:兩個有理數a和b,如果分別計算a+b,a﹣b,ab,的值,發現有三個結果恰好相同,則b=.【答案】1【規范解答】解:∵有意義,∴b≠0,∴a+b≠a﹣b,∵a+b,a﹣b,ab,的值有三個結果恰好相同,∴ab=,∴當a=0,ab=成立,當a≠0時,即,∴b=±1,當a=0時,a+b=b,a﹣b=﹣b,ab=0,=0,∴此時不能有三個結果恰好相同;當b=1時,a+b=a+1,a﹣b=a﹣1,ab=a,=a,∴此時不能有三個結果恰好相同;當b=﹣1時,a+b=a﹣1,a﹣b=a+1,ab=﹣a,=﹣a,∴a﹣1=﹣a或a+1=﹣a,∴a=或a=;∴能使三個結果恰好相同時,b的值為﹣1,故答案為:﹣1.

【思路點撥】由題意可知a=0或b=±1,再分別對a、b的值進行討論,可得b=1,a=或a=。18.(2分)(2020七上·江夏月考)已知a、b、c是非零有理數,且a+b+c=0,abc<0,求=.【答案】1或1【規范解答】解:∵a、b、c是非零有理數,且a+b+c=0,abc<0,

∴三個數中只有一個數是負數,∴當是異號時,則有,當是同號時,則有,∴的值為1或1;故答案為:1或1.【思路點撥】根據題意易得a、b、c的正負可能是一負兩正,然后進行分類求解即可.19.(2分)(2020七上·海曙月考)下圖是一個程序運算圖,若開始輸入的數是125,則2020次之后輸出的數是.【答案】5【規范解答】解:設n為輸入的次數,

當n=1:輸入125,∵x≠1,得125÷5=25,

當n=2:輸入25,∵x≠1,得25÷5=5,

當n=3:輸入5,∵x≠1,得5÷5=1,

當n=4:輸入1,∵x=1,得4+1=5,

當n=5:輸入5,∵x≠1,得5÷5=1,

當n=6:輸入1,∵x=1,得4+1=5,

∴當n>4時,每兩次一循環,第奇數次是1,第偶數次是5,

∴當n=2020時,輸出的數是5.

故答案為:5.

【思路點撥】根據程序運算圖,代入x的值,根據結果判斷是否等于1,分別求出每次輸出的數字,最后得出規律,當n>4時,每兩次一循環,第奇數次是1,第偶數次是5,從而推出當n=2020時,輸出的數是5.20.(2分)(2020七上·南潯期末)已知長方形ABCD,AD>AB,AD=10,將兩張邊長分別為a和b(a>b)的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),矩形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2,當S2S1=3b時,AB=?!敬鸢浮?【規范解答】解:設AB=x,

則S1=10xa2b2+(a+b10)b,S2=10xa2b2+(a+bx)b,

∵S2S1=3b,

∴10xa2b2+(a+bx)b10x+a2+b2(a+b10)b=3b,

bx=7b,

∴x=7.

故答案為:7.【思路點撥】本題運用設而不求的思想,設AB=x,分別吧兩個陰影部分的面積用含a、b和x的代數式表示,代入給定的關系式,整理化簡即可求值.三、解答題(共8題;共61分)21.(5分)(2022七上·利川期末)化簡下列各式:(1)(2分);(2)(3分).【答案】(1)解:(2)解:【思路點撥】(1)先去括號(括號前是負號,去掉括號和負號,括號里的每一項都要變號;括號前面是正號,去掉括號和正號,括號里的每一項都不變號,括號前的數要與括號里的每一項都要相乘),再合并同類項即可;

(2)先去括號(括號前是負號,去掉括號和負號,括號里的每一項都要變號;括號前面是正號,去掉括號和正號,括號里的每一項都不變號,括號前的數要與括號里的每一項都要相乘),再合并同類項化簡即可.22.(5分)(2022七上·昌邑期末)一塊三角尺的形狀和尺寸如圖所示,如果圓孔的半徑是r,三角尺的厚度是h,用式子表示這塊三角尺的體積V.若,求V的值(取3).【答案】解:整個三角板的體積為,圓孔的體積為,所以,所求三角板的體積,若a=6cm,r=0.5cm,h=0.2cm,把它們代入上式,得:.答:V的值是3.45cm3.【思路點撥】利用這塊三角尺的體積=三棱柱的體積圓孔(圓柱)的體積,進行計算即可.23.(5分)(2022七上·豐滿期末)歷史上的數學巨人歐拉最先把關于x的多項式用記號來表示,把x等于某數m時的多項式的值用來表示.例如,對于多項式,當時,多項式的值為,若,求的值.【答案】解:∵,,∴,即,∴,即.【思路點撥】將x=1代入多項式可得,再將x=1代入多項式可得,然后整體代入計算即可.24.(8分)(2020七上·高平期中)某電器商銷售一種微波爐和電磁爐,微波爐每臺定價800元,電磁爐每臺定價200元.“雙十一”期間商場決定開展促銷活動,活動期間向客戶提供兩種優惠方案.方案一:買一臺微波爐送一臺電磁爐;方案二:微波爐和電磁爐都按定價的90%付款.現某客戶要到該賣場購買微波爐2臺,電磁爐x臺(x>2).(1)(4分)若該客戶按方案一購買,需付款元.(用含x的代數式表示);若該客戶按方案二購買,需付款元.(用含x的代數式表示)(2)(2分)若x=5時,通過計算說明此時按哪種方案購買較為合算?(3)(2分)當x=5時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法.【答案】(1)200x+1200;180x+1440(2)解:將x=5代入方案一的付款中得:200×5+1200=2200元,x=5代入方案二的付款中得:180×5+1440=2340元,∵2200元<2340元,∴當x=5時,按方案一購買比較合算。(3)解:若該客戶按方案一購買微波爐2臺送電磁爐2臺;再按方案二購買電磁爐3臺.付款金額為:800×2+200×3×90%=2140元.∵2140元<2200元,∴當x=5時,按此方案購買更為省錢.【規范解答】解:(1)根據題意:若該客戶按方案一購買,需付款:800×2+200(x-2)=200x+1200元;若該客戶按方案二購買,需付款:90%×(800×2+200x)=180x+1440元;故答案為:200x+1200;180x+1440.【思路點撥】(1)根據題目提供的兩種不同的付款方式列出代數式即可;

(2)將x=5分別代入(1)中兩個代數式分別求出費用,然后比較即可;

(3)根據題意考慮可以先按方案一購買微波爐2臺送電磁爐2臺;再按方案二購買電磁爐3臺的費用,然后與(2)中的結論比較即得.25.(8分)(2023七上·龍華期末)甲、乙兩家超市以相同的價格出售同樣的商品,但為了吸引顧客,各自推出不同的優惠方案.在甲超市累計購買商品超過400元后,超出的部分按原價收取:在乙超市購買商品只按原價的收取.設某顧客預計累計購物x元.(1)(4分)當時,分別用代數式表示顧客在兩家超市購物所付的費用;(2)(4分)當時,該顧客應選擇哪一家超市購物比較合算?說明理由.【答案】(1)解:當時,由題意可知,在甲超市購物所付費用為:,在乙超市購物所付費用為:;(2)解:當x=1000元時,在甲超市購物所付費用:(元),在乙超市購物所付費用為:(元),∵820元800元,∴顧客應選擇乙超市購物比較合算.【思路點撥】(1)當x>400時,根據400+超過400元的部分的費用即可表示出在甲超市購買的費用;根據原價×80%可得在乙超市購買的費用;

(2)將x=1000代入(1)的關系式中求出相應的值,然后進行比較即可判斷.26.(8分)(2023七上·武義期末)如圖,兩疊規格相同的杯子整齊地疊放在桌面上,請根據圖中給出的數據信息,解答下列問題:(1)(4分)按如圖所示疊放一起時,相鄰兩個杯子杯口之間的高度相差cm.(2)(4分)若x個杯子按如圖所示整齊疊放在桌面上,求這些杯子的頂部距離桌面的距離(用含x的代數式表示).當時,求這些杯子的頂部距離桌面的距離.【答案】(1)2(2)解:一個杯子的高度為:cm,每增加一個杯子,所疊杯子的總高度增加,故杯子的頂部距離桌面的距離為:,將代入中得:(cm),故這些杯子的頂部距離桌面的距離為.【規范解答】解:(1)(cm),故相鄰兩個杯子杯口之間的高度相差;故答案為:2;

【思路點撥】(1)觀察發現,兩個杯子整齊地疊放在一起高10cm,三個杯子整齊地疊放在一起高12cm,故作差即可得出相鄰兩個杯子杯口之間的高度;

(2)由(1)的計算結果,首先求出一個杯子的高度,進而用一個杯子的高度加上x個杯子疊放在一起增加的高度即可求出杯子的頂部距離桌面的距離;最后將x=10代入所所得的式子計算即可.27.(12分)(2023七上·成都期末)已知是最小的正整數,,滿足,且,,分別對應數軸上的點,,.(1)(4分)請直接寫出,,的值:,,.(2)(3分)若點為一動點,從點出發以每秒2個單位長度的速度向右運動,則點運動幾秒后,點到點的距離是點到點的距離的2倍?(3)(5分)點以每秒1個單位長度的速度向左運動,同時點和點分別以每秒2個單位長度和5個單位長度的速度向右運動.點與點之間的距離表示為,點與點之間的距離表示為假設運動時間為,的值是否隨著時間的變化而改變?若變化,請說明理由;若不變,請求其值.【答案】(1)1;1;5(2)解:設點P運動x秒后,點P到點A的距離是點P到點C的距離的2倍,

∴PA=2x,

∵點A,C表示的數分別為1,5,

∴AC=5(1)=6

當點P在點A、C之間時,PC=62x,

2x=2(62x),

解之:x=2;

當點P在點C的右邊時,PC=2x6,

2x=2(2x6)

解之:x=6.

∴點P運動2秒或6秒后,點P到點A的距離是點P到點C的距離的2倍(3)解:由題意得,運動后,點A表示的數為1t,點B表示的數是1+2t,點C表示的數是5+5t,

∴AB=1+2t(1t)=3t+2,

BC=5+5t(1+2t)=3t+4,

∴BCAB=3t+4(3t+2)=2,

∴BCAB的值是定值,BCAB的值不隨著時間t的變化而變化,其值為2.【規范解答】解:(1)∵(c5)2+|a+b|=0,

∴c5=0且a+b=0

∴c=5,a+b=0,

∵b是最小的正整數,

∴b=1,

∴a=1.

故答案為:1,1,5

【思路點撥】(1)利用幾個非負數之和為0,則每一個數都為0,可得到關于a,b,c的方程組,再根據最小的正整數是1,可得到b的值,從而可求出a,b,c的值.(2)設點P運動x秒后,點P到點A的距離是點P到點C的距離的2倍,可表示出PA的長,利用點A,C所表示的數,可得到AC的長;再分情況討論:當點P在點A、C之間時,PC=62x;當點P在點C的右邊時,PC=2x6;分別根據PA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論