怒江市重點中學2025屆數學九上期末復習檢測試題含解析_第1頁
怒江市重點中學2025屆數學九上期末復習檢測試題含解析_第2頁
怒江市重點中學2025屆數學九上期末復習檢測試題含解析_第3頁
怒江市重點中學2025屆數學九上期末復習檢測試題含解析_第4頁
怒江市重點中學2025屆數學九上期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

怒江市重點中學2025屆數學九上期末復習檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每題4分,共48分)1.若關于的方程有兩個相等的根,則的值為()A.10 B.10或14 C.-10或14 D.10或-142.已知,下列變形錯誤的是()A. B. C. D.3.下列圖形中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.4.二次函數y=ax2+bx+c的部分對應值如下表x﹣3﹣2﹣1012y﹣12﹣50343利用二次函數的圖象可知,當函數值y>0時,x的取值范圍是()A.0<x<2 B.x<0或x>2 C.﹣1<x<3 D.x<﹣1或x>35.下列品牌的運動鞋標志中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.6.拋物線y=﹣2(x+1)2﹣3的對稱軸是()A.直線x=1 B.直線x=﹣1 C.直線x=3 D.直線x=﹣37.如圖圖形中,是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.8.二次函數y=x2﹣6x圖象的頂點坐標為()A.(3,0) B.(﹣3,﹣9) C.(3,﹣9) D.(0,﹣6)9.如圖,某中學計劃靠墻圍建一個面積為的矩形花圃(墻長為),圍欄總長度為,則與墻垂直的邊為()A.或 B. C. D.10.如圖,在邊長為4的菱形ABCD中,∠ABC=120°,對角線AC與BD相交于點O,以點O為圓心的圓與菱形ABCD的四邊都相切,則圖中陰影區域的面積為()A. B. C. D.11.如圖,⊙O的圓周角∠A=40°,則∠OBC的度數為()A.80° B.50° C.40° D.30°12.在公園內,牡丹按正方形種植,在它的周圍種植芍藥,如圖反映了牡丹的列數(n)和芍藥的數量規律,那么當n=11時,芍藥的數量為()A.84株B.88株C.92株D.121株二、填空題(每題4分,共24分)13.如圖,將一個裝有水的杯子傾斜放置在水平的桌面上,其截面可看作一個寬BC=6厘米,長CD=16厘米的矩形.當水面觸到杯口邊緣時,邊CD恰有一半露出水面,那么此時水面高度是______厘米.14.周末小明到商場購物,付款時想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進行支付,則選擇“微信”支付方式的概率為____________.15.已知m,n是一元二次方程的兩根,則________.16.如圖,圓形紙片⊙O半徑為5,先在其內剪出一個最大正方形,再在剩余部分剪出4個最大的小正方形,則4個小正方形的面積和為_______.17.在國慶節的一次同學聚會上,每人都向其他人贈送了一份小禮品,共互送110份小禮品,則參加聚會的有______名同學.18.分解因式____________.三、解答題(共78分)19.(8分)在平面直角坐標系xOy中,拋物線y=ax2+bx+c的開口向上,與x軸相交于A、B兩點(點A在點B的右側),點A的坐標為(m,0),且AB=1.(1)填空:點B的坐標為(用含m的代數式表示);(2)把射線AB繞點A按順時針方向旋轉135°與拋物線交于點P,△ABP的面積為8:①求拋物線的解析式(用含m的代數式表示);②當0≤x≤1,拋物線上的點到x軸距離的最大值為時,求m的值.20.(8分)如圖,二次函數y=x2+bx+c的圖象與x軸相交于點A、B兩點,與y軸相交于點C(0,﹣3),拋物線的對稱軸為直線x=1.(1)求此二次函數的解析式;(2)若拋物線的頂點為D,點E在拋物線上,且與點C關于拋物線的對稱軸對稱,直線AE交對稱軸于點F,試判斷四邊形CDEF的形狀,并證明你的結論.21.(8分)一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同.(1)攪勻后從袋子中任意摸出1個球,摸到紅球的概率是多少?(2)攪勻后先從袋子中任意摸出1個球,記錄顏色后不放回,再從袋子中任意摸出1個球,用畫樹狀圖或列表的方法列出所有等可能的結果,并求出兩次都摸到白球的概率.22.(10分)已知反比例函數的圖像經過點(2,-3).(1)求這個函數的表達式.(2)點(-1,6),(3,2)是否在這個函數的圖像上?(3)這個函數的圖像位于哪些象限?函數值y隨自變量的增大如何變化?23.(10分)如圖,拋物線y=ax2+bx+6經過點A(﹣2,0),B(4,0)兩點,與y軸交于點C,點D是拋物線上一個動點,設點D的橫坐標為m(1<m<4)連接BC,DB,DC.(1)求拋物線的函數解析式;(2)△BCD的面積是否存在最大值,若存在,求此時點D的坐標;若不存在,說明理由;(3)在(2)的條件下,若點M是x軸上一動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形.若存在,請直接寫出點M的坐標;若不存在,請說明理由.24.(10分)如圖,已知二次函數的圖象經過,兩點.(1)求這個二次函數的解析式;(2)設該二次函數的對稱軸與軸交于點,連接,,求的面積.25.(12分)已知二次函數.(1)用配方法求出函數的頂點坐標;(2)求出該二次函數圖象與軸的交點坐標。(3)該圖象向右平移個單位,可使平移后所得圖象經過坐標原點.請直接寫出平移后所得圖象與軸的另一個交點的坐標為.26.如圖,菱形的頂點在菱形的邊上,與相交于點,,若,,求菱形的邊長.

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據題意利用根的判別式,進行分析計算即可得出答案.【詳解】解:∵關于的方程有兩個相等的根,∴,即有,解得10或-14.故選:D.【點睛】本題考查的是根的判別式,熟知一元二次方程中,當時,方程有兩個相等的兩個實數根是解答此題的關鍵.2、B【解析】根據比例式的性質,即可得到答案.【詳解】∵?,?,?,?,∴變形錯誤的是選項B.故選B.【點睛】本題主要考查比例式的性質,掌握比例式的內項之積等于外項之積,是解題的關鍵.3、C【分析】根據中心對稱圖形和軸對稱圖形的定義逐項進行判斷即可.【詳解】A、是中心對稱圖形,但不是軸對稱圖形,故不符合題意;B、是軸對稱圖形,但不是中心對稱圖形,故不符合題意;C、既是中心對稱圖形,又是軸對稱圖形,符合題意;D、既不是中心對稱圖形,也不是軸對稱圖形,故不符合題意.故選:C.【點睛】本題考查中心對稱圖形和軸對稱圖形的定義,熟練掌握定義是關鍵.4、C【分析】函數值y=1對應的自變量值是:-1、3,在它們之間的函數值都是正數.由此可得y>1時,x的取值范圍.【詳解】從表格可以看出,二次函數的對稱軸為直線x=1,故當x=﹣1或3時,y=1;因此當﹣1<x<3時,y>1.故選C.【點睛】本題主要考查了二次函數與x軸的交點、二次函數的性質等知識,解題的關鍵是要認真觀察,利用表格中的信息解決問題.5、D【分析】根據軸對稱圖形和中心對稱圖形的定義即可得出答案.【詳解】A是軸對稱圖形,但不是中心對稱圖形,故此選項不符合題意;B不是軸對稱圖形,也不是中心對稱圖形,故此選項不符合題意;C不是軸對稱圖形,也不是中心對稱圖形,故此選項不符合題意;D既是軸對稱圖形又是中心對稱圖形,故此選項符合題意.故選D.【點睛】本題考查軸對稱及中心對稱的定義,掌握中心對稱圖形與軸對稱圖形的概念,要注意:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.6、B【分析】根據題目中拋物線的解析式,可以寫出該拋物線的對稱軸.【詳解】解:∵拋物線y=﹣2(x+1)2﹣3,∴該拋物線的對稱軸為直線x=﹣1,故選:B.【點睛】本題主要考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=a(x-h)2+k中,對稱軸為x=h,頂點坐標為(h,k).7、D【解析】試題解析:A、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉后它的兩部分能夠重合;即不滿足中心對稱圖形的定義,故此選項不合題意;B、是軸對稱圖形.不是中心對稱圖形,因為找不到任何這樣的一點,旋轉后它的兩部分能夠重合;即不滿足中心對稱圖形的定義,故此選項不合題意;C、不是軸對稱圖形,因為找不到任何這樣的一條直線,沿這條直線對折后它的兩部分能夠重合;即不滿足軸對稱圖形的定義.是中心對稱圖形,故此選項不合題意;D、是軸對稱圖形,又是中心對稱圖形,故此選項符合題意;故選D.8、C【分析】將二次函數解析式變形為頂點式,進而可得出二次函數的頂點坐標.【詳解】解:∵y=x2﹣6x=x2﹣6x+9﹣9=(x﹣3)2﹣9,∴二次函數y=x2﹣6x圖象的頂點坐標為(3,﹣9).故選:C.【點睛】此題主要考查二次函數的頂點,解題的關鍵是熟知二次函數的圖像與性質.9、C【分析】設與墻相對的邊長為(28-2x)m,根據題意列出方程x(28-2x)=80,求解即可.【詳解】設與墻相對的邊長為(28-2x)m,則0<28-2x≤12,解得8≤x<14,根據題意列出方程x(28-2x)=80,解得x1=4,x2=10因為8≤x<14∴與墻垂直的邊為10m故答案為C.【點睛】本題考查一元二次方程的應用,根據題意列出方程并求解是解題的關鍵,注意題中限制條件,選取適合的x值.10、C【分析】如圖,分別過O作OE⊥AB于E、OF⊥BC于F、OG⊥CD于G、OH⊥DA于H,則.分別求出上式中各量即可得到解答.【詳解】如圖,過O作OE⊥AB于E,由題意得:∠EOB=∠OAB=-∠ABO=-∠ABC=-=,AB=4∴OB=2,OA=2,OE=,BE=1,∠HOE=-=∴BD=2OB=4,AC=2OA=4,∴∴.故選C.【點睛】本題考查圓的綜合應用,在審清題意的基礎上把圖形分割成幾塊計算后再綜合是解題關鍵.11、B【分析】然后根據圓周角定理即可得到∠OBC的度數,由OB=OC,得到∠OBC=∠OCB,根據三角形內角和定理計算出∠OBC.【詳解】∵∠A=40°.

∴∠BOC=80°,

∵OB=OC,

∴∠OBC=∠OCB=50°,

故選:B.【點睛】本題考查了圓周角定理:一條弧所對的圓周角是它所對的圓心角的一半;也考查了等腰三角形的性質以及三角形的內角和定理.12、B【解析】解:由圖可得,芍藥的數量為:4+(2n﹣1)×4,∴當n=11時,芍藥的數量為:4+(2×11﹣1)×4=4+(22﹣1)×4=4+21×4=4+84=88,故選B.點睛:本題考查規律型:圖形的變化類,解答本題的關鍵是明確題意,發現題目中圖形的變化規律.二、填空題(每題4分,共24分)13、【分析】先由勾股定理求出,再過點作于,由的比例線段求得結果即可.【詳解】解:過點作于,如圖所示:∵BC=6厘米,CD=16厘米,CD厘米,,由勾股定理得:,,,,,,即,.故答案為:.【點睛】此題主要考查了勾股定理的應用以及相似三角形的判定與性質,正確把握相關性質是解題關鍵.14、【分析】利用概率公式直接寫出答案即可.【詳解】∵共“微信”、“支付寶”、“銀行卡”三種支付方式,∴選擇“微信”支付方式的概率為,故答案為:.【點睛】本題考查概率的求法與運用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.15、-1【分析】根據根與系數的關系求出m+n與mn的值,然后代入計算即可.【詳解】∵m,n是一元二次方程的兩根,∴m+n=2,mn=-3,∴2-3=-1.故答案為:-1.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)根與系數的關系,若x1,x2為方程的兩個根,則x1,x2與系數的關系式:,.16、16【分析】根據題意可知四個小正方形的面積相等,構造出直角△OAB,設小正方形的面積為x,根據勾股定理求出x值即可得到小正方形的邊長,從而算出4個小正方形的面積和.【詳解】解:如圖,點A為上面小正方形邊的中點,點B為小正方形與圓的交點,D為小正方形和大正方形重合邊的中點,由題意可知:四個小正方形全等,且△OCD為等腰直角三角形,∵⊙O半徑為5,根據垂徑定理得:∴OD=CD==5,設小正方形的邊長為x,則AB=,則在直角△OAB中,OA2+AB2=OB2,即,解得x=2,∴四個小正方形的面積和=.故答案為:16.【點睛】本題考查了垂徑定理、勾股定理、正方形的性質,熟練掌握利用勾股定理解直角三角形是解題的關鍵.17、1【解析】設參加聚會的有x名學生,根據“在國慶節的一次同學聚會上,每人都向其他人贈送了一份小禮品,共互送10份小禮品”,列出關于x的一元二次方程,解之即可.【詳解】解:設參加聚會的有x名學生,根據題意得:,解得:,舍去,即參加聚會的有1名同學,故答案為:1.【點睛】本題考查了一元二次方程的應用,正確找出等量關系,列出一元二次方程是解題的關鍵.18、【分析】先提取公因式,再利用平方差公式即可求解.【詳解】故答案為:.【點睛】此題主要考查因式分解,解題的關鍵是熟知因式分解的方法.三、解答題(共78分)19、(1)(m﹣1,0);(3)①y=(x﹣m)(x﹣m+1);②m的值為:3+3或3﹣3或3≤m≤3.【分析】(1)A的坐標為(m,0),AB=1,則點B坐標為(m-1,0);(3)①S△ABP=?AB?yP=3yP=8,即:yP=1,求出點P的坐標為(1+m,1),即可求解;②拋物線對稱軸為x=m-3.分x=m-3≥1、0≤x=m-3≤1、x=m-3≤0三種情況,討論求解.【詳解】解:(1)A的坐標為(m,0),AB=1,則點B坐標為(m﹣1,0),故答案為(m﹣1,0);(3)①S△ABP=AB?yP=3yP=8,∴yP=1,把射線AB繞點A按順時針方向旋轉135°與拋物線交于點P,此時,直線AP表達式中的k值為1,設:直線AP的表達式為:y=x+b,把點A坐標代入上式得:m+b=0,即:b=﹣m,則直線AP的表達式為:y=x﹣m,則點P的坐標為(1+m,1),則拋物線的表達式為:y=a(x﹣m)(x﹣m+1),把點P坐標代入上式得:a(1+m﹣m)(1+m﹣m+1)=1,解得:a=,則拋物線表達式為:y=(x﹣m)(x﹣m+1),②拋物線的對稱軸為:x=m﹣3,當x=m﹣3≥1(即:m≥3)時,x=0時,拋物線上的點到x軸距離為最大值,即:(0﹣m)(0﹣m+1)=,解得:m=3或3±3,∵m≥3,故:m=3+3;當0≤x=m﹣3≤1(即:3≤m≤3)時,在頂點處,拋物線上的點到x軸距離為最大值,即:﹣(m﹣3﹣m)(m﹣3﹣m+1)=,符合條件,故:3≤m≤3;當x=m﹣3≤0(即:m≤3)時,x=1時,拋物線上的點到x軸距離為最大值,即:(1﹣m)(1﹣m+1)=,解得:m=3或3±3,∵m≤3,故:m=3﹣3;綜上所述,m的值為:3+3或3﹣3或3≤m≤3.【點睛】本題考查的是二次函數知識的綜合運用,涉及到圖象旋轉、一次函數基本知識等相關內容,其中(3)中,討論拋物線對稱軸所處的位置與0,1的關系是本題的難點.20、(1)y=x2﹣2x﹣3;(2)四邊形EFCD是正方形,見解析【分析】(1)拋物線與y軸相交于點C(0,﹣3),對稱軸為直線x=1知c=﹣3,,據此可得答案;(2)結論四邊形EFCD是正方形.如圖1中,連接CE與DF交于點K.求出E、F、D、C四點坐標,只要證明DF⊥CE,DF=CE,KC=KE,KF=KD即可證明.【詳解】(1)∵拋物線與y軸相交于點C(0,﹣3),對稱軸為直線x=1∴c=﹣3,,即b=﹣2,∴二次函數解析式為;(2)四邊形EFCD是正方形.理由如下:如圖,連接CE與DF交于點K.∵,∴頂點D(1,4),∵C、E關于對稱軸對稱,C(0,﹣3),∴E(2,﹣3),∵A(﹣1,0),設直線AE的解析式為,則,解得:,∴直線AE的解析式為y=﹣x﹣1.∴F(1,﹣2),∴CK=EK=1,FK=DK=1,∴四邊形EFCD是平行四邊形,又∵CE⊥DF,CE=DF,∴四邊形EFCD是正方形.【點睛】本題是二次函數綜合題,主要考查了待定系數法、一次函數的應用、正方形的判定和性質等知識,解題的關鍵是靈活運用待定系數法確定函數解析式.21、(1);(2),見解析【分析】(1)袋中一共有3個球,有3種等可能的抽取情況,抽取紅球的情況只有1種,摸到紅球的概率即可求出;(2)分別使用樹狀圖法或列表法將抽取球的結果表示出來,第一次共有3種不同的抽取情況,第二次有2種不同的抽取情況,所有等可能出現的結果有6種,找出兩次都是白球的的抽取結果,即可算出概率.【詳解】解:(1)∵袋中一共有3個球,有3種等可能的抽取情況,抽取紅球的情況只有1種,∴;(2)畫樹狀圖,根據題意,畫樹狀圖結果如下:一共有6種等可能出現的結果,兩次都抽取到白球的次數為2次,∴;用列表法,根據題意,列表結果如下:一共有6種等可能出現的結果,兩次都抽取到白球的次數為2次,∴.【點睛】本題考查了列表法或樹狀圖法求概率,用圖表的形式將第一次、第二次抽取所可能發生的情況一一列出,避免遺漏.22、(1)y=-;(2)(-1,6)在函數圖像上,(3,2)不在函數圖像上;(3)二、四象限,在每個象限內,y隨x的增大而增大.【分析】(1)根據待定系數法求得即可;(2)根據圖象上點的坐標特征,把點(﹣1,6),(3,2)代入解析式即可判斷;(3)根據反比例函數的性質即可得到結論.【詳解】(1)設反比例函數的解析式為y(k≠0).∵反比例函數的圖象經過點(2,﹣3),∴k=2×(﹣3)=﹣6,∴反比例函數的表達式y;(2)把x=﹣1代入y得:y=6,把x=3代入y得:y=﹣2≠2,∴點(﹣1,6)在函數圖象上,點(3,2)不在函數圖象上.(3)∵k=﹣6<0,∴雙曲線在二、四象限,在每個象限內y隨x的增大而增大.【點睛】本題考查了待定系數法求反比例函數的解析式,反比例函數的性質,反比例函數圖象上點的坐標特征,熟練掌握待定系數法以及反比例函數的性質是解答本題的關鍵.23、(1);(2)存在,D的坐標為(2,6);(3)存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形,點M的坐標為:(2,0)或(6,0)或(,0)或(,0).【分析】(1)根據點,利用待定系數法求解即可;(2)先根據函數解析式求出點C、D坐標,再將過點D作y軸的平行線交BC于點E,利用待定系數法求出直線BC的函數解析式,從而得出點E坐標,然后根據得出的面積表達式,最后利用二次函數的性質求出的面積取最大值時m的值,從而可得點D坐標;(3)根據平行四邊形的定義分兩種情況:BD為平行四邊形的邊和BD為平行四邊形的對角線,然后先分別根據平行四邊形的性質求出點N坐標,從而即可求出點M坐標.【詳解】(1)∵拋物線經過點∴解得故拋物線的解析式為;(2)的面積存在最大值.求解過程如下:,當時,由題意,設點D坐標為,其中如圖1,過點D作y軸的平行線交BC于點E設直線BC的解析式為把點代入得解得∴直線BC的解析式為∴可設點E的坐標為由二次函數的性質可知:當時,隨m的增大而增大;當時,隨m的增大而減小則當時,取得最大值,最大值為6此時,故的面積存在最大值,此時點D坐標為;(3)存在.理由如下:由平行四邊形的定義,分以下兩種情況討論:①當BD是平行四邊形的一條邊時如圖2所示:M、N分別有三個點設點∴點N的縱坐標為絕對值為6即解得(與點D重合,舍去)或或則點的橫坐標分別為∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論