2023屆廣東省佛山市超盈實驗中學高考數學試題模擬試題_第1頁
2023屆廣東省佛山市超盈實驗中學高考數學試題模擬試題_第2頁
2023屆廣東省佛山市超盈實驗中學高考數學試題模擬試題_第3頁
2023屆廣東省佛山市超盈實驗中學高考數學試題模擬試題_第4頁
2023屆廣東省佛山市超盈實驗中學高考數學試題模擬試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023屆廣東省佛山市超盈實驗中學高考數學試題模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.62.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件3.中國古典樂器一般按“八音”分類.這是我國最早按樂器的制造材料來對樂器進行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.4.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內切 B.相交 C.外切 D.相離5.函數的圖象大致為()A. B.C. D.6.的展開式中的一次項系數為()A. B. C. D.7.關于函數,有下述三個結論:①函數的一個周期為;②函數在上單調遞增;③函數的值域為.其中所有正確結論的編號是()A.①② B.② C.②③ D.③8.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了9.函數(其中是自然對數的底數)的大致圖像為()A. B. C. D.10.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關系為()A.b>c>a B.c>b>a C.a>b>c D.b>a>c11.已知平行于軸的直線分別交曲線于兩點,則的最小值為()A. B. C. D.12.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁二、填空題:本題共4小題,每小題5分,共20分。13.若冪函數的圖象經過點,則其單調遞減區間為_______.14.已知一個四面體的每個頂點都在表面積為的球的表面上,且,,則__________.15.已知復數滿足(為虛數單位),則復數的實部為____________.16.若曲線(其中常數)在點處的切線的斜率為1,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)當時,求不等式的解集;(2)若時不等式成立,求的取值范圍.18.(12分)某藝術品公司欲生產一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內接圓錐組成,圓錐的側面用于藝術裝飾,如圖1.為了便于設計,可將該禮品看成是由圓及其內接等腰三角形繞底邊上的高所在直線旋轉180°而成,如圖2.已知圓的半徑為,設,圓錐的側面積為.(1)求關于的函數關系式;(2)為了達到最佳觀賞效果,要求圓錐的側面積最大.求取得最大值時腰的長度.19.(12分)已知橢圓的左焦點為F,上頂點為A,直線AF與直線垂直,垂足為B,且點A是線段BF的中點.(I)求橢圓C的方程;(II)若M,N分別為橢圓C的左,右頂點,P是橢圓C上位于第一象限的一點,直線MP與直線交于點Q,且,求點P的坐標.20.(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為(),M為該曲線上的任意一點.(1)當時,求M點的極坐標;(2)將射線OM繞原點O逆時針旋轉與該曲線相交于點N,求的最大值.21.(12分)如圖所示,在四面體中,,平面平面,,且.(1)證明:平面;(2)設為棱的中點,當四面體的體積取得最大值時,求二面角的余弦值.22.(10分)已知數列是公比為正數的等比數列,其前項和為,滿足,且成等差數列.(1)求的通項公式;(2)若數列滿足,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.2、D【解析】

通過列舉法可求解,如兩角分別為時【詳解】當時,,但,故充分條件推不出;當時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數在解三角形中的具體應用,屬于基礎題3、B【解析】

分別求得所有基本事件個數和滿足題意的基本事件個數,根據古典概型概率公式可求得結果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關鍵是能夠利用組合的知識求得基本事件總數和滿足題意的基本事件個數.4、B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r5、A【解析】

根據函數的奇偶性和單調性,排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數,排除C和D.當時,,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點睛】本小題主要考查函數圖像的識別,考查利用導數研究函數的單調區間和極值,屬于中檔題.6、B【解析】

根據多項式乘法法則得出的一次項系數,然后由等差數列的前項和公式和組合數公式得出結論.【詳解】由題意展開式中的一次項系數為.故選:B.【點睛】本題考查二項式定理的應用,應用多項式乘法法則可得展開式中某項系數.同時本題考查了組合數公式.7、C【解析】

①用周期函數的定義驗證.②當時,,,再利用單調性判斷.③根據平移變換,函數的值域等價于函數的值域,而,當時,再求值域.【詳解】因為,故①錯誤;當時,,所以,所以在上單調遞增,故②正確;函數的值域等價于函數的值域,易知,故當時,,故③正確.故選:C.【點睛】本題考查三角函數的性質,還考查推理論證能力以及分類討論思想,屬于中檔題.8、C【解析】

假設若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【點睛】本題考查了邏輯推理能力,屬基礎題.9、D【解析】由題意得,函數點定義域為且,所以定義域關于原點對稱,且,所以函數為奇函數,圖象關于原點對稱,故選D.10、A【解析】

利用指數函數、對數函數的單調性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關系為b>c>a.故選:A.【點睛】本題考查三個數的大小的判斷,考查指數函數、對數函數的單調性等基礎知識,考查運算求解能力,是基礎題.11、A【解析】

設直線為,用表示出,,求出,令,利用導數求出單調區間和極小值、最小值,即可求出的最小值.【詳解】解:設直線為,則,,而滿足,那么設,則,函數在上單調遞減,在上單調遞增,所以故選:.【點睛】本題考查導數知識的運用:求單調區間和極值、最值,考查化簡整理的運算能力,正確求導確定函數的最小值是關鍵,屬于中檔題.12、C【解析】

分別假設甲乙丙丁說的是真話,結合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】①假設甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.【點睛】本題考查合情推理,解題時可從一種情形出發,推理出矛盾的結論,說明這種情形不會發生,考查了分析能力和推理能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用待定系數法求出冪函數的解析式,再求出的單調遞減區間.【詳解】解:冪函數的圖象經過點,則,解得;所以,其中;所以的單調遞減區間為.故答案為:.【點睛】本題考查了冪函數的圖象與性質的應用問題,屬于基礎題.14、【解析】由題意可得,該四面體的四個頂點位于一個長方體的四個頂點上,設長方體的長寬高為,由題意可得:,據此可得:,則球的表面積:,結合解得:.點睛:與球有關的組合體問題,一種是內切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數量關系,并作出合適的截面圖,如球內切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.15、【解析】

利用復數的概念與復數的除法運算計算即可得到答案.【詳解】,所以復數的實部為2.故答案為:2【點睛】本題考查復數的除法運算,考查學生的基本計算能力,是一道基礎題.16、【解析】

利用導數的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點睛】本題考查導數的幾何意義,考查學生的基本運算能力,是一道基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】分析:(1)將代入函數解析式,求得,利用零點分段將解析式化為,然后利用分段函數,分情況討論求得不等式的解集為;(2)根據題中所給的,其中一個絕對值符號可以去掉,不等式可以化為時,分情況討論即可求得結果.詳解:(1)當時,,即故不等式的解集為.(2)當時成立等價于當時成立.若,則當時;若,的解集為,所以,故.綜上,的取值范圍為.點睛:該題考查的是有關絕對值不等式的解法,以及含參的絕對值的式子在某個區間上恒成立求參數的取值范圍的問題,在解題的過程中,需要會用零點分段法將其化為分段函數,從而將不等式轉化為多個不等式組來解決,關于第二問求參數的取值范圍時,可以應用題中所給的自變量的范圍,去掉一個絕對值符號,之后進行分類討論,求得結果.18、(1),(2)側面積取得最大值時,等腰三角形的腰的長度為【解析】試題分析:(1)由條件,,,所以S,;(2)令,所以得,通過求導分析,得在時取得極大值,也是最大值.試題解析:(1)設交于點,過作,垂足為,在中,,,在中,,所以S,(2)要使側面積最大,由(1)得:令,所以得,由得:當時,,當時,所以在區間上單調遞增,在區間上單調遞減,所以在時取得極大值,也是最大值;所以當時,側面積取得最大值,此時等腰三角形的腰長答:側面積取得最大值時,等腰三角形的腰的長度為.19、(I).(II)【解析】

(I)寫出坐標,利用直線與直線垂直,得到.求出點的坐標代入,可得到的一個關系式,由此求得和的值,進而求得橢圓方程.(II)設出點的坐標,由此寫出直線的方程,從而求得點的坐標,代入,化簡可求得點的坐標.【詳解】(I)∵橢圓的左焦點,上頂點,直線AF與直線垂直∴直線AF的斜率,即①又點A是線段BF的中點∴點的坐標為又點在直線上∴②∴由①②得:∴∴橢圓的方程為.(II)設由(I)易得頂點M、N的坐標為∴直線MP的方程是:由得:又點P在橢圓上,故∴∴∴或(舍)∴∴點P的坐標為【點睛】本小題主要考查直線和圓錐曲線的位置關系,考查兩直線垂直的條件,考查向量數量積的運算.屬于中檔題.在解題過程中,首先閱讀清楚題意,題目所敘述的坐標、所敘述的直線是怎么得到的,向量的數量積對應的坐標都有哪一些,應該怎么得到,這些在讀題的時候需要分析清楚.20、(1)點M的極坐標為或(2)【解析】

(1)令,由此求得的值,進而求得點的極坐標.(2)設出兩點的極坐標,利用勾股定理求得的表達式,利用三角函數最值的求法,求得的最大值.【詳解】(1)設點M在極坐標系中的坐標,由,得,∵∴或,所以點M的極坐標為或(2)由題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論