




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
...wd...
...wd...
...wd...
SpecializedEnglish
for
Graduatesof2011
Contents
1HYDROPOWERPLANT
1
1.1Hydropower
1
1.2AdvantagesofHydropower
1
1.3DisadvantageofaHydroplant
2
1.4Multi-PurposeUses
2
1.4.1Irrigation
2
1.4.2Floodcontrol
2
1.4.3Navigation
2
1.4.4Recreation
2
1.4.5FishBreeding
3
1.5TypicalComponentsofaHydroelectricPlant
3
1.5.1DamorBarrage
3
1.5.2Water-ConduitSystem
3
1.5.3PowerHouse
3
1.5.4TailRace
3
1.5.5ElectricalPowerTransmission
4
1.6ClassificationofHydroelectricPlants
4
1.6.1Base-LoadandPeak-LoadPlants
4
1.6.2Plantscanalsobeclassifiedasfollows:
4
1.6.3ClassificationontheBasisofAvailableHeads
7
2HYDRAULICTURBINES
10
2.1Introduction
10
2.1.1Sub-systemsofaWaterTurbine
10
2.2ClassificationofWaterTurbines
10
2.3PeltonTurbine
12
2.3.1Injector
12
2.3.2Runner
12
2.3.3NumberofNozzles
13
2.3.4Distributor
14
2.3.5Casing
15
2.3.6JetBrake
16
2.3.7TailWaterDepressorSystem
16
2.4FrancisTurbine
17
2.4.1MainComponents
18
2.4.2ScrollCase
18
2.4.3StayVanesRing
18
2.4.4GuideVanesMechanism
19
2.4.5Runner
19
2.4.6DraftTube
21
2.4.7HeadCover
22
2.4.8BottomRing
22
2.4.9Shaft
22
2.4.10TurbinePitLiner
23
2.4.11DewateringofTurbine
23
2.5PropellerandKaplanTurbine
23
2.5.1Introduction
23
2.5.2ImprovementinEfficiency
24
2.5.3MainComponentsoftheRunner
24
2.5.4LocationofServomotor
25
2.5.5ScrollCase
26
2.5.6AutomaticAirValves
26
2.5.7ShaftoftheHydrounit
26
2.5.8Over-speedProtectiveDevices
27
2.6DeriazTurbine
27
2.6.1Introduction
27
2.6.2Servomotor
29
3HVAC
30
3.1Background
30
3.2Heating
31
3.3Ventilation
33
3.3.1Mechanicalorforcedventilation
33
3.3.2Naturalventilation
34
3.3.3AirborneIllnesses
34
3.4Airconditioning
34
3.5Energyefficiency
36
3.5.1Heatingenergy
36
3.5.2GeothermalHeatPump
37
3.5.3VentilationEnergyrecovery
37
3.5.4Airconditioningenergy
37
3.6AirFiltrationandCleaning
37
3.6.1CleanAirDeliveryRateandFilterPerformance
38
3.7HVACindustryandstandards
38
3.7.1International
38
3.7.2NorthAmerica(USA)
38
3.7.3Europe(UnitedKingdom)
39
3.7.4Australia
40
3.7.5Asia(India)
40
1HYDROPOWERPLANT
1.1Hydropower
Itisthepowergeneratedbyusingwaterastheenergy-supplyingagent.Inthiscase,waterisallowedtoflowfromahigherleveltoalowerlevelthroughaturbinewherethepotentialenergyofwaterisconvertedintokineticenergyandtheturbine,inturn,rotatesageneratortoproduceelectricity.
Hydropowergenerationdependsupontheavailabilityofrainwater.Cloudsareformedbecauseoftheheatingofseawaterbythesun.Theymovetowardstheland,wherelow-pressurezonesareformedandastheygetcooled,moisturestartsprecipitating.Therainwaterstartsmovingtowardslowerlevelsbecauseofgravity,throughasystemofnaturaldrainsconsistingofnullahs,rivulets,riversandsoon.Thiswatercanbestoredinreservoirscreatedontherivers,byconstructionofdamsandcanbeusedtogeneratepower.Aftergeneration,thewaterisletoutintotheriverandgraduallytravelsfurtherandultimatelyreachesthesea.Hereitisheatedupbythesuntostartthenextcycle.Therefore,hydropowerisnothingbutconversionofsolarenergyintoelectricitythroughacircuitousroute.
1.2AdvantagesofHydropower
Hydropowergenerationisnon-wastingself-replenishingandnon-polluting.
Itisaphysicalphenomenonandnochemicalchangeisinvolved.Watercomeoutunchangedfromtheturbineafterimpartingitsenergyandcanbeusedagaineitherforpowergenerationorforirrigation.Infact,thisisdoneinmulti-purposeriver-valleyschemesliketheChambalValleydevelopmentinIndiaandtheTennesseeValleydevelopmentinU.S.A.InthecaseoftheChambalValleydevelopment,powerisgeneratedwiththehelpofthesamewaterinthreepowerhouses,situatedoneafteranotherontheriver,beforebeingreleasedintoirrigationcanals.Asagainstthis,coal,oilornuclearfuelcanonlybeusedonce.
Thesupplyofwaterisautomaticandthewaterutilizedinoneseasonisreplenishedbynatureinthenextseason.Thewaterreachesthepowerhousesiteonitsown-nominingoperationsandtransportationareinvolvedasinthecaseofcoaloroil.
Waterpoweriscleanasitdoesnotproduceanypollutants,whereasinthecaseofthermalornuclearpowergenerationpollutionisinevitable,astoxicby-productsareemitted.
Thehydropowerplantshaveveryhighefficiencies.Theturbineefficiencyisabove90percentandtheoverallefficiencycanbeabove80percentwhichismuchhigherthanthatofthermalplants.Thehydro-plantsarelonglastingandmanyplantsarestillinserviceeven40yearsaftercommissioning.Thepercentageofoutagesisverylow,asshutdownsforrepairsandmaintenancearefewer.Theplantsareavailableforinstantloadingandasetcanstarttakingfullloadwithinfiveminutes,startingfromthestandstillposition,whereasthermalplantsmaytakeaboutfivetosixhours.
1.3DisadvantageofaHydroplant
Theinitialinvestmentsareveryheavyandthespecificcostishighcomparedtoathermalplant.Thetimeneededforconstructionisquitelonganditaffectstheeconomyadverselyasreturnsstartflowinginlate.Whenalakeisformed,landsubmergencecreatesitsownproblem.
Astheavailabilityofwatervariesfromyeartoyear,inlowrainfallyearstheplantcapacityisunder-utilized.
Anywaytheadvantagesfaroutweighthedisadvantages.
1.4Multi-PurposeUses
Asalreadystartedearlier,anumberofadditionalbenefitscanbeobtainedfromwaterstoredbesidesgeneratingpower,suchasirrigation,floodcontrol,navigationandsoon.Themulti-purposeuseofwatergivesmuchbetterreturnsoninvestmentandthereismarkedimprovementinthecost-benefitratio.
1.4.1Irrigation
Thewaterbeingdischargedfromapowerhousecanbefedintoacanalnetworktoprovideirrigationfacilitiestolandsituateddownstream.Asamatteroffact,inmanymulti-purposeprojectsinIndia,waterisstoredpredominantlyforirrigationpurposeswithpowergenerationplayingasecondaryrole.
1.4.2Floodcontrol
Creationoflakeonariverhastheinherentpossibilitiesoffloodmoderation.Thefloodwatersmaybefullyorpartlyabsorbedinthelakeandonlyregulatedquantitiesofwaterareallowedtopassdownstream,protectingthelowerareasfromfloods.Thisaspectassumesgreatimportanceinthecaseofrivers,whichgoondevastatinglargetractsoffertilelandandvaluablepropertyyearafteryear.
1.4.3Navigation
Theformationofstoragereservoirincreasesthenormalwaterlevelinariver.Manypoolsandshallowstretchesoftherivergetsubmergedunderwaterandasufficientdepthofwaterbecomesavailableforshiptonavigatethesestretches.Thusfacilitateseconomictransportofcargoandpassengers.
Themulti-purposedevelopmentoftheriverDanubeinEuropeisatypicalexampleofcombiningnavigationwithpowergeneration.It’slinkingupwiththeriverRhinehasallowedtheshipstopassfromtheNorthSeatotheBlackSea.Barrageshavebeenconstructedatanumberofpointsintheriverincreasingtheupstreamwaterlevelsandpowerisbeinggeneratedattheseplaces.Theonlyadditionalconstructionneededistoprovidenavigationallocksatthesitesofthebarragefortheuninterruptedmovementofaship.
1.4.4Recreation
Creationareservoirofwaterconsiderablyenhancesthebeautyandcharmofsurroundingareasandtouristresortsandpicnicspotsarebeingdevelopedintheseareas.
1.4.5FishBreeding
Itcantakeplaceonalargescaleandfishcanbemadeavailableeconomicallytothepopulationlivingintheneighboringareas.
1.5TypicalComponentsofaHydroelectricPlant
Themaincomponentsare(Fig.1.1):(i)Thedam,(ii)Thewater-conduitsystem,(iii)Thepowerhouse,(iv)Thetail-watersystem,(v)Theswitchyard,and(vi)Thetransmissionlines.
1.5.1DamorBarrage
Adamorabarrageisconstructedontherivercourseresultinginanincreaseintheupstreamwaterlevelbecauseoftheformationofareservoirwhosestoragecapacityisdecidedbythewaterrequirementforpowergeneration.
1.5.2Water-ConduitSystem
Water-conduitsystemcarrieswaterfromthereservoirtothepowerstation.Itmayconsistofapressuretunneland/orpipescalledpenstockswhichmaybelaidabovegroundorunderground.Onepenstockmayfeedanumberofturbines,whereanumberofbrancheshavetotakeoff.Flow-controlvalvesmaybeprovidedbeforewaterisadmittedtotheturbines.Asurgetankisoccasionallyprovidedtorestricttheeffectsofwaterhammer.
Fig.1.1Typicallayoutofahighheadhydroelectricplant
1.5.3PowerHouse
Thepowerhouseaccommodatestheturbinesandgenerators,thecontrolequipmentandinsomecasesthetransformers.Itslocationcanbeeitheratthesurfaceorundergroundanditmaybeawayfrom,atthefootof,orinthebodyof,thedam.
1.5.4TailRace
Thewater,afterpassingthroughtheturbine,isdischargedintothetailracewhich,inturn,carriesittoariver.
Thetailracecanbeanopenchannelasinthecaseofasurfacepowerhouse,oratunnelasinthecaseofanundergroundpowerhouse.Thedischargefromalltheturbinesiscollectedinthetailraceatitsbeginningbymeansofbranchchannels.Thetailracemaydischargeintotheoriginalriveritselfor,inrarecases,someotherriverwhenthereisaninter-basintransferofwater.
1.5.5ElectricalPowerTransmission
Theelectricalpowergeneratedbythegeneratorsisfedtothestep-uptransformersbymeansofcablesasthegeneratingvoltagemaybemuchlessthanthetransmissionvoltage.Thepoweristhensuppliedtothetransmissionnetworkviaaswitchyardwheretheswitchingandprotectiveequipmentisinstalled.Theswitchyardislocatedwithinashortdistanceofthepowerhouse.
Transmissionlinestakeoffindifferentdirectionstosupplypowertotheconsumers.
Inthecaseofcombinedhydropowerandirrigationmulti-purposeprojects,acanalnetworkisestablisheddownstreamofdam.
1.6ClassificationofHydroelectricPlants
Theycanbeclassifiedonthebasisoftheoperatingheads,theoutputorsomeotherimportantfeatures,suchasthenatureofduty.
1.6.1Base-LoadandPeak-LoadPlants
Everyhydro-plantisanindividualentityandnotwoplantsareidenticalasregardsthehead,availabilityofpowerandsoon.Ahydro-plantworksasabase-loadplantifthereiscontinuouspowergeneration.Thisisespeciallythecaseiftheflowthroughtheriverhastobemaintainedconstantformeetingtheirrigationornavigationrequirements.
Iftheconditionsprevailingatthepowerstationpermitregulatedreleases,theplantcanbeusedtogeneratepeakpower.Forexample,theRoselandplant(France)isdesignedtomeetthepeakwinterdemandfromwaterlargelystoredduringthesummerperiod.
1.6.2Plantscanalsobeclassifiedasfollows:
(a)Conventionalhydro-plantswithvalleystorage.
(b)Run-of-the-riverplants.
(c)Diversiontypeofplants.
(d)Pumpedstorageplants.
(e)Tidal-powerplants.
Valleystorageplants
Inthecaseofconventionalhydro-plants,areservoirhastobecreatedontherivertostoresufficientrainwater,forpowergenerationthroughouttheyearbyconstructionofadam.Thesetypesofplantsaresub-dividedintohigh-headplants,medium-headplants,andlow-headplants(Fig.1.2).
Itisdifficulttolaydownexactranges.However,thefollowinglimitsarerecommended(theyarearbitraryandareasgoodasanyotherarbitraryrangesrecommended):
(i)High-headplants-havingheadsofmorethan250m.
(ii)Medium-headplants-havingheadsbetween50mand250m.
(iii)Low-headplants-havingheadslessthan50m.
Fig.1.2TheGeheyanvalleystorageplant(China)
Today,theplantcapacitiesrangefromafewhundredkilowattstothousandsofmegawattswithindividualunitcapacitiesrangingfromfewhundredkWto700,000kWanditisratherdifficulttoclassifytheplantsoncapacitybasis.
Run-of-the-riverplants
Fig.1.3
\o"ChiefJosephDam"
ChiefJosephDam
near
\o"Bridgeport,Washington"
Bridgeport,Washington
,USA,isamajorrun-of-the-riverstationwithoutasizeablereservoir
Theseplantsgeneratepoweronriverswithacontinuousflowthroughouttheyearwithminorseasonalvariations.Suchconditionsprevailmainlyincoldercountriesbutrarelyintropicalregions.Thestorageneededisminorandcanbecreatedbybuildingabarrageacrosstheriver,whichraisesthewaterlevelcreatingsomeheadforpowergeneration.
Thesitechosenshouldbeonastablereachoftheriverwithstablebedandbanks.Themaximumfloodanticipatedshouldhavealowvalueandwatershouldnotcarrymuchsediment.Creatingasmallpooldoesnotcreateproblemsoflandacquisitionanddoesnotsubstantiallyaltertheoriginaltopographyalongthebanksoftheriverassubmergenceislow.Thispoolmayalsobeusefulfornavigation(Fig.1.3).
SuchplantsarequitepopularinEurope.AchainofsuchplantshavebeenconstructedontheDanubetofullyutilizeitspowerandnavigationpotential.
DiversionCanalPlants
Thesediversiontypeofplantscangeneratepower,takingadvantageoftheleveldifferenceonacurvedmeanderingstretchofariverwithasteepbed-slope.
Adiversioncanalwithaflatslopeinwhichtheflowfromtheriverisdivertedtakesofffromthehigherreachesofthemainriver.Aweirisconstructedattheendofthecanaltocreateasmallpoolofwater,calledtheforebay.Thewaterfromtheforebayisfedbymeansofthepenstockstothepowerhousesituatedinthelowreachoftheriver(Fig.1.4).
Fig.1.4Diversionhydropowerplant
PumpedStoragePlants
Apumped-storageplantusestworeservoirs,onelocatedatamuchhigherelevationthantheother.Duringperiodsoflowdemandforelectricity,suchasnightsandweekends,energyisstoredbyreversingtheturbinesandpumpingwaterfromthelowertotheupperreservoir.Thestoredwatercanlaterbereleasedtoturntheturbinesandgenerateelectricityasitflowsbackintothelowerreservoir.
Thesearepeakloadplantswherewaterispumpeduptoahigherlevelduringoffpeakperiodstogeneratepeakpowerduringthehighdemandperiod.
Fig.1.5Pumpedstorageplant
TidalPowerPlants
Thesedependontidesforgeneratingpower.Thissourceisunconventionalandalotofimportanceisbeinggiventothistypeofplant.
1.6.3ClassificationontheBasisofAvailableHeads
Therearevariousclassificationsofhydroelectricpowerplants.Basedonthetotalheadofwateravailablethehydroelectricpowerplantsareclassifiedintothreetypes:lowheadhydroelectricpowerplants,mediumheadhydroelectricpowerplants,andhighheadhydroelectrcipowerplants.
Lowheadhydroelectricpowerplants
Fig.1.6Cross-sectionofatypicallowheadplant
Thelowheadhydroelectricpowerplantsaretheonesinwhichtheavailablewaterheadislessthan30meters.Thedaminthistypeofpowerplantsisofverysmallheadmaybeevenoffewmetersonly.Incertaincasesweirisusedandinothercasesthereisnodamatallandmerelyflowingwaterintheriverisusedforgenerationofelectricity.Thelowheadtypesofhydroelectricpowerplantscannotstorewaterandelectricityisproducedonlywhensufficientflowofwaterisavailableintheriver.Thustheyproduceelectricityonlyduringparticularseasonswhenabundantflowofwaterisavailable.Sincetheheadofwaterisverysmallinthesehydroelectricpowerplants,theyhavelesserpowerproducingcapacity.InsuchplantsFrancis,PropellerorKaplantypesofturbinesareused.Alsonosurgetankisrequired.
Mediumheadhydroelectricpowerplants
Thehydroelectricpowerplantsinwhichtheworkingheadofwaterismorethan30metersbutlessthan300metersarecalledmediumheadhydroelectricpowerplants.Thesehydroelectricpowerplantareusuallylocatedinthemountainousregionswheretheriversflowsathighheights,thusobtainingthehighheadofthewaterindambecomespossible.Inmediumheadhydroelectricplantsdamsareconstructedbehindwhichtherecanbelargereservoirofwater.Waterfromthereservoircanbetakentothepowergenerationsystemwhereelectricityisgenerated.TheturbinesusedareFrancistypeofthesteelencasedvariety.
Fig.1.7Cross-sectionofatypicalmediumheadplant
Highheadhydroelectricpowerplants
Inthehighheadhydroelectricpowerplantstheheadofwateravailableforproducing
electricity
ismorethan300metersanditcanextendevenupto1000meters.Thesearethemostcommonlyconstructedhydroelectricpowerplants.Inthehighheadhydroelectricpowerplantshugedamsareconstructedacrosstherivers.Thereislargereservoirofwaterinthedamsthatcanstorewateratveryhighheads.Waterismainlystoredduringtherainyseasonsanditcanbeusedthroughouttheyear.Thusthehighheadhydroelectricpowerplantscangenerateelectricitythroughouttheyear.Thehighheadhydroelectric
powerplants
areveryimportantinthenationalgridbecausetheycanbeadjustedeasilytoproducethepoweraspertherequiredloads.
Whenconstructingthehighheadtypesofhydroelectricpowerplantsanumberoffactorsespeciallythoserelatedtotheenvironmentandnaturalecosystemofthelandandwatershouldbeconsidered.Thetotalheightofthedamdependsuponanumberoffactorslikequantityofavailablewater,powertobegenerated,surroundingareas,naturalecosystemetc.
Mainlyintheseplantspressuretunnelisprovidedbeforethesurgetank,whichinturnconnectedtopenstock.Apressuretunnelistakenofffromthereservoirandwaterbroughttothevalvehouse(notshowninpicture)atthestartofthe
\o"Penstocks"
penstocks
.Thepenstocksarehugesteelpipeswhichtakelargequantityofwaterfromthevalvehousetothepowerhouse.Thevalvehousecontainsmainsluicegatesandinadditionautomaticisolatingvalveswhichcomeintooperationwhenthepenstockbursts,cuttingfurthersupplyofwater.Surgetankisanopentankandisbuiltjustinbetweenthebeginningofthepenstocksandthevalvehouse.Inabsenceofsurgetank,thewaterhammercandamagethefixedgates.Normallythehighheadplantsare500metersaboveandforheadsabove500metersPeltonwheelsareused.
Fig.1.8Cross-sectionofatypicalhighheadplant
2HYDRAULICTURBINES
2.1Introduction
Hydraulicturbinesaremachineswhichconvertwaterenergyintomechanicalenergy.Sotheycanbeconsideredasmotorsrunbywater.Waterstoredinareservoirathigherlevelflowsthroughtheturbinetothetailracechannelsituatedatalowerlevelimpartingpotentialenergytotheturbine.
ThetheoreticalfoundationsofthemodernturbinewerelaidbyEuler.ThefirstpracticalturbinesweremadebyFourneyronandBourdin.Forneyroninstalleda40H.P.turbineatSt.Blassius,Francein1835.OtherprominentnamesinthefieldarePelton,FrancisandKaplan.TheimpulseturbineisnamedafterPeltonwhocontributedalottoitsdevelopment.ThemixedflowreactionturbineisnamedafterFrancis,whobuiltthefirstwelldesignedunitin1849.ThemovablebladepropellertypeturbineisnamedafterKaplan.
Thefunctionofawaterturbineistorotatethegeneratorcoupledtoittoproduceelectricity.Theconversionofenergytotheelectricalformisnecessarybecauseelectricalenergycanbetransmittedoverlongdistanceswithproportionatelyverysmalllossescomparedtomechanicalorhydraulicenergy.
2.1.1Sub-systemsofaWaterTurbine
Essentiallyanywaterturbinemusthavethefollowingsub-systems:
(i)Guidepassagestoadmitwatertotherotatingelementwithminimumlossofenergy.
(ii)Agoverningmechanismtoinstantaneouslyadjustthequantityofwaterbeingadmitted,tomatchtheloadfluctuations.
(iii)Arotatingelementorarunnerwheretheconversionofenergytakesplace.Atorqueisdevelopedwhichrotatesthegeneratorcoupledtotheturbine.
(iv)Passagestoleadthewateroutoftheturbinebody.
Inthecaseofwaterturbines,thedensityremainsconstantwhilewaterispassingthroughallabovestages.Insteamturbinesandgasturbinesthedensityvaries.Hencetheirconstructiondiffersmateriallyfromwaterturbines.
2.2ClassificationofWaterTurbines
Thewaterturbinesaredividedintotwomaincategories:theimpulsetypeandreactiontype(Fig.2.1).Intheimpulsetype,waterflowsoutofanozzleintheformofajetsuchthatallthepressureenergyisconvertedintokineticenergy.Thisjethitsoneofaseriesbucketsmountedonarunner.Becauseoftheimpact,therunnerisrotatedabouttheaxis.Thereforetheturbineiscalledtheimpulseturbine.Thewatercomesoutofthenozzleatatmosphericpressure.Hencethepressurethroughouttheturbineisatmospheric,i.e.,constant.Thereforetheturbineisalsocalledaconstantpressureturbine.
Fig.2.1Principleofthebasicimpulseturbine(left)andreactionturbine(right)
Thereactiontypeofturbineworksontheprincipleofreaction.Waterenterstheturbineathighpressureandlowvelocityintheguidepassage.Somepressureenergyisconvertedintokineticenergyandwaterthenenterstherunner(rotor)andpressureenergyissuccessivelyconvertedintokineticenergy.Asthewaterflowingthroughtherunnerisaccelerated,itcreatesareactionontherunnervaneandtherunnerisrotated(Fig.2.2).Asthestaticfluidpressureactsonbothsidesthevane,itdoesnotdoanywork.Workisentirelydoneduetoconversionofenergyintokineticform.Itistobenotedthatrelativevelocitygoesonincreasingfrominlettooutletthoughtheabsolutevelocitydecreases.Inareactionturbinewaterisunderpressureandtheturbineisfilledwithwaterwhenworking.Therefore,theturbinemustbeenclosedinacasingwhichshouldbeabletowithstandthepressure.Inthecaseofanimpulseturbine,thecasingprotectstherunneranddoesnotallowthewatertosplashout.Itdoesnotserveanyhydraulicfunction.Inareactionturbine,watercanbeadmittedallovertherunneratonetime.Therefore,itissometimescalledafulladmissionturbine.
Fig.2.2Francisturbine(reactiontype)
Onlythreeturbineshaveservedthetestoftime.TheyarePeltonturbinesoftheimpulsetypeandFrancisandKaplanturbinesofthereactiontype.
Therefore,thesethreewillbediscussedinsomedetail.Recently,anothertypeofturbineknownasDeriazturbineordiagonalflowturbinehasbeendevelopedwhichisacrossbetweenaFrancisturbineandaKaplanturbine.
2.3PeltonTurbine
ThePeltonturbine(Fig.2.3)isanimpulsetypeofturbine.ItwasnamedafterL.A.Pelon(1829-1908)whoin1880,patentedandimprovedtheformofimpulsewheels.Inimpulseturbine,waterflowsoutofanozzleintheformofajetintheatmosphere,convertinghydraulicenergyintokineticenergy.Thejetdeliversanimpacttooneofaseriesofbladesmountedontherunner,whichstartsrotating.Asthepressureisatmosphericandconstant,thisturbineisalsocalledconstantpressureturbine.Thisturbineisessentiallyahighheadturbineandiscurrentlybeingusedforaheadrangeof300mto1800m.ThespecificspeedrangeisfromNs=4toNs=70.
Theturbineessentiallyconsistsofthreecomponents:(i)theinjector(ii)therunnerand(iii)thecasing.
2.3.1Injector
Thefunctionoftheinjectorare(a)todirectthewaterreceivedfromthepenstockattheproperangleontherunner(b)tovarythequalityofwatertosuitinstantaneousloadconditions,therebygoverningtheturbine.
Theinjectorsarelocatedeitherattheendofabendfittedtothepenstockofinthecaseofmulti-nozzleturbines,orattheendofthedistributionbranches.
Theinjectorconsistsof(a)anozzle(b)aspearrodalsocalledaneedleand(c)adeflector.Thespearrodslidescoaxiallyinthenozzle.Itsmovementcontrolstheareaofthenozzleopeningandthereforethequantityofwaterbeingadmittedtotherunner.
Fig.2.3CrosssectionofaPeltonturbine
2.3.2Runner
Thisconsistsofacylindricaldiscwiththebladesmountedonitsperiphery(Fig.2.4).
Theblades,alsocalledbuckets,lookliketwinhemi-ellipsoidedcupsjoinedinthemiddlebymeansofaridge.Thisshapeisgiventoobtainmaximumefficiencyconditions.Thejetofwaterentersthebucketinthecenter,bifurcatesintotwoportionsandtravelsoverthebucketandleavesattheoutlettips.Thisbifurcationcounterbalancesanyax
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 初中數學蘇科版七年級上冊2.4 絕對值與相反數教案設計
- 北師大版(2013)六年級下冊第二十九課 小小理財師教案配套
- 五一節前安全教育培訓
- 重癥肌無力小講課
- 浙教版七年級科學上 4.8 物理性質和化學性質教學設計
- 二婚夫妻合同終止條款
- 人教版小學二年級上冊數學 第4單元 第3課時 5的乘法口訣 教案
- 供應商合作合同樣本
- 人教版實驗活動1 氧氣的實驗室制取與性質教案配套
- 2025網絡視頻廣告投放合同范本
- 2024年湖南省各市州湘能農電服務有限公司招聘筆試參考題庫含答案解析
- 三年級下冊面積單位換算練習200道及答案
- 《游園》(教案)-高中語文統編版必修下冊
- 正大天虹方矩管鍍鋅方矩管材質書
- 《婚姻繼承法第四章》課件
- 血液透析并發癥護理查房課件
- 全子宮切除術后教學查房
- 大門改造施工方案
- 化療藥外溢處理應急預案
- 顛覆:迎接第二次量子革命
- 液冷數據中心白皮書 2023:數據中心液冷革命解鎖未來的數字冰河
評論
0/150
提交評論