水利水電工程專業英語_第1頁
水利水電工程專業英語_第2頁
水利水電工程專業英語_第3頁
水利水電工程專業英語_第4頁
水利水電工程專業英語_第5頁
已閱讀5頁,還剩28頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

...wd...

...wd...

...wd...

SpecializedEnglish

for

Graduatesof2011

Contents

1HYDROPOWERPLANT

1

1.1Hydropower

1

1.2AdvantagesofHydropower

1

1.3DisadvantageofaHydroplant

2

1.4Multi-PurposeUses

2

1.4.1Irrigation

2

1.4.2Floodcontrol

2

1.4.3Navigation

2

1.4.4Recreation

2

1.4.5FishBreeding

3

1.5TypicalComponentsofaHydroelectricPlant

3

1.5.1DamorBarrage

3

1.5.2Water-ConduitSystem

3

1.5.3PowerHouse

3

1.5.4TailRace

3

1.5.5ElectricalPowerTransmission

4

1.6ClassificationofHydroelectricPlants

4

1.6.1Base-LoadandPeak-LoadPlants

4

1.6.2Plantscanalsobeclassifiedasfollows:

4

1.6.3ClassificationontheBasisofAvailableHeads

7

2HYDRAULICTURBINES

10

2.1Introduction

10

2.1.1Sub-systemsofaWaterTurbine

10

2.2ClassificationofWaterTurbines

10

2.3PeltonTurbine

12

2.3.1Injector

12

2.3.2Runner

12

2.3.3NumberofNozzles

13

2.3.4Distributor

14

2.3.5Casing

15

2.3.6JetBrake

16

2.3.7TailWaterDepressorSystem

16

2.4FrancisTurbine

17

2.4.1MainComponents

18

2.4.2ScrollCase

18

2.4.3StayVanesRing

18

2.4.4GuideVanesMechanism

19

2.4.5Runner

19

2.4.6DraftTube

21

2.4.7HeadCover

22

2.4.8BottomRing

22

2.4.9Shaft

22

2.4.10TurbinePitLiner

23

2.4.11DewateringofTurbine

23

2.5PropellerandKaplanTurbine

23

2.5.1Introduction

23

2.5.2ImprovementinEfficiency

24

2.5.3MainComponentsoftheRunner

24

2.5.4LocationofServomotor

25

2.5.5ScrollCase

26

2.5.6AutomaticAirValves

26

2.5.7ShaftoftheHydrounit

26

2.5.8Over-speedProtectiveDevices

27

2.6DeriazTurbine

27

2.6.1Introduction

27

2.6.2Servomotor

29

3HVAC

30

3.1Background

30

3.2Heating

31

3.3Ventilation

33

3.3.1Mechanicalorforcedventilation

33

3.3.2Naturalventilation

34

3.3.3AirborneIllnesses

34

3.4Airconditioning

34

3.5Energyefficiency

36

3.5.1Heatingenergy

36

3.5.2GeothermalHeatPump

37

3.5.3VentilationEnergyrecovery

37

3.5.4Airconditioningenergy

37

3.6AirFiltrationandCleaning

37

3.6.1CleanAirDeliveryRateandFilterPerformance

38

3.7HVACindustryandstandards

38

3.7.1International

38

3.7.2NorthAmerica(USA)

38

3.7.3Europe(UnitedKingdom)

39

3.7.4Australia

40

3.7.5Asia(India)

40

1HYDROPOWERPLANT

1.1Hydropower

Itisthepowergeneratedbyusingwaterastheenergy-supplyingagent.Inthiscase,waterisallowedtoflowfromahigherleveltoalowerlevelthroughaturbinewherethepotentialenergyofwaterisconvertedintokineticenergyandtheturbine,inturn,rotatesageneratortoproduceelectricity.

Hydropowergenerationdependsupontheavailabilityofrainwater.Cloudsareformedbecauseoftheheatingofseawaterbythesun.Theymovetowardstheland,wherelow-pressurezonesareformedandastheygetcooled,moisturestartsprecipitating.Therainwaterstartsmovingtowardslowerlevelsbecauseofgravity,throughasystemofnaturaldrainsconsistingofnullahs,rivulets,riversandsoon.Thiswatercanbestoredinreservoirscreatedontherivers,byconstructionofdamsandcanbeusedtogeneratepower.Aftergeneration,thewaterisletoutintotheriverandgraduallytravelsfurtherandultimatelyreachesthesea.Hereitisheatedupbythesuntostartthenextcycle.Therefore,hydropowerisnothingbutconversionofsolarenergyintoelectricitythroughacircuitousroute.

1.2AdvantagesofHydropower

Hydropowergenerationisnon-wastingself-replenishingandnon-polluting.

Itisaphysicalphenomenonandnochemicalchangeisinvolved.Watercomeoutunchangedfromtheturbineafterimpartingitsenergyandcanbeusedagaineitherforpowergenerationorforirrigation.Infact,thisisdoneinmulti-purposeriver-valleyschemesliketheChambalValleydevelopmentinIndiaandtheTennesseeValleydevelopmentinU.S.A.InthecaseoftheChambalValleydevelopment,powerisgeneratedwiththehelpofthesamewaterinthreepowerhouses,situatedoneafteranotherontheriver,beforebeingreleasedintoirrigationcanals.Asagainstthis,coal,oilornuclearfuelcanonlybeusedonce.

Thesupplyofwaterisautomaticandthewaterutilizedinoneseasonisreplenishedbynatureinthenextseason.Thewaterreachesthepowerhousesiteonitsown-nominingoperationsandtransportationareinvolvedasinthecaseofcoaloroil.

Waterpoweriscleanasitdoesnotproduceanypollutants,whereasinthecaseofthermalornuclearpowergenerationpollutionisinevitable,astoxicby-productsareemitted.

Thehydropowerplantshaveveryhighefficiencies.Theturbineefficiencyisabove90percentandtheoverallefficiencycanbeabove80percentwhichismuchhigherthanthatofthermalplants.Thehydro-plantsarelonglastingandmanyplantsarestillinserviceeven40yearsaftercommissioning.Thepercentageofoutagesisverylow,asshutdownsforrepairsandmaintenancearefewer.Theplantsareavailableforinstantloadingandasetcanstarttakingfullloadwithinfiveminutes,startingfromthestandstillposition,whereasthermalplantsmaytakeaboutfivetosixhours.

1.3DisadvantageofaHydroplant

Theinitialinvestmentsareveryheavyandthespecificcostishighcomparedtoathermalplant.Thetimeneededforconstructionisquitelonganditaffectstheeconomyadverselyasreturnsstartflowinginlate.Whenalakeisformed,landsubmergencecreatesitsownproblem.

Astheavailabilityofwatervariesfromyeartoyear,inlowrainfallyearstheplantcapacityisunder-utilized.

Anywaytheadvantagesfaroutweighthedisadvantages.

1.4Multi-PurposeUses

Asalreadystartedearlier,anumberofadditionalbenefitscanbeobtainedfromwaterstoredbesidesgeneratingpower,suchasirrigation,floodcontrol,navigationandsoon.Themulti-purposeuseofwatergivesmuchbetterreturnsoninvestmentandthereismarkedimprovementinthecost-benefitratio.

1.4.1Irrigation

Thewaterbeingdischargedfromapowerhousecanbefedintoacanalnetworktoprovideirrigationfacilitiestolandsituateddownstream.Asamatteroffact,inmanymulti-purposeprojectsinIndia,waterisstoredpredominantlyforirrigationpurposeswithpowergenerationplayingasecondaryrole.

1.4.2Floodcontrol

Creationoflakeonariverhastheinherentpossibilitiesoffloodmoderation.Thefloodwatersmaybefullyorpartlyabsorbedinthelakeandonlyregulatedquantitiesofwaterareallowedtopassdownstream,protectingthelowerareasfromfloods.Thisaspectassumesgreatimportanceinthecaseofrivers,whichgoondevastatinglargetractsoffertilelandandvaluablepropertyyearafteryear.

1.4.3Navigation

Theformationofstoragereservoirincreasesthenormalwaterlevelinariver.Manypoolsandshallowstretchesoftherivergetsubmergedunderwaterandasufficientdepthofwaterbecomesavailableforshiptonavigatethesestretches.Thusfacilitateseconomictransportofcargoandpassengers.

Themulti-purposedevelopmentoftheriverDanubeinEuropeisatypicalexampleofcombiningnavigationwithpowergeneration.It’slinkingupwiththeriverRhinehasallowedtheshipstopassfromtheNorthSeatotheBlackSea.Barrageshavebeenconstructedatanumberofpointsintheriverincreasingtheupstreamwaterlevelsandpowerisbeinggeneratedattheseplaces.Theonlyadditionalconstructionneededistoprovidenavigationallocksatthesitesofthebarragefortheuninterruptedmovementofaship.

1.4.4Recreation

Creationareservoirofwaterconsiderablyenhancesthebeautyandcharmofsurroundingareasandtouristresortsandpicnicspotsarebeingdevelopedintheseareas.

1.4.5FishBreeding

Itcantakeplaceonalargescaleandfishcanbemadeavailableeconomicallytothepopulationlivingintheneighboringareas.

1.5TypicalComponentsofaHydroelectricPlant

Themaincomponentsare(Fig.1.1):(i)Thedam,(ii)Thewater-conduitsystem,(iii)Thepowerhouse,(iv)Thetail-watersystem,(v)Theswitchyard,and(vi)Thetransmissionlines.

1.5.1DamorBarrage

Adamorabarrageisconstructedontherivercourseresultinginanincreaseintheupstreamwaterlevelbecauseoftheformationofareservoirwhosestoragecapacityisdecidedbythewaterrequirementforpowergeneration.

1.5.2Water-ConduitSystem

Water-conduitsystemcarrieswaterfromthereservoirtothepowerstation.Itmayconsistofapressuretunneland/orpipescalledpenstockswhichmaybelaidabovegroundorunderground.Onepenstockmayfeedanumberofturbines,whereanumberofbrancheshavetotakeoff.Flow-controlvalvesmaybeprovidedbeforewaterisadmittedtotheturbines.Asurgetankisoccasionallyprovidedtorestricttheeffectsofwaterhammer.

Fig.1.1Typicallayoutofahighheadhydroelectricplant

1.5.3PowerHouse

Thepowerhouseaccommodatestheturbinesandgenerators,thecontrolequipmentandinsomecasesthetransformers.Itslocationcanbeeitheratthesurfaceorundergroundanditmaybeawayfrom,atthefootof,orinthebodyof,thedam.

1.5.4TailRace

Thewater,afterpassingthroughtheturbine,isdischargedintothetailracewhich,inturn,carriesittoariver.

Thetailracecanbeanopenchannelasinthecaseofasurfacepowerhouse,oratunnelasinthecaseofanundergroundpowerhouse.Thedischargefromalltheturbinesiscollectedinthetailraceatitsbeginningbymeansofbranchchannels.Thetailracemaydischargeintotheoriginalriveritselfor,inrarecases,someotherriverwhenthereisaninter-basintransferofwater.

1.5.5ElectricalPowerTransmission

Theelectricalpowergeneratedbythegeneratorsisfedtothestep-uptransformersbymeansofcablesasthegeneratingvoltagemaybemuchlessthanthetransmissionvoltage.Thepoweristhensuppliedtothetransmissionnetworkviaaswitchyardwheretheswitchingandprotectiveequipmentisinstalled.Theswitchyardislocatedwithinashortdistanceofthepowerhouse.

Transmissionlinestakeoffindifferentdirectionstosupplypowertotheconsumers.

Inthecaseofcombinedhydropowerandirrigationmulti-purposeprojects,acanalnetworkisestablisheddownstreamofdam.

1.6ClassificationofHydroelectricPlants

Theycanbeclassifiedonthebasisoftheoperatingheads,theoutputorsomeotherimportantfeatures,suchasthenatureofduty.

1.6.1Base-LoadandPeak-LoadPlants

Everyhydro-plantisanindividualentityandnotwoplantsareidenticalasregardsthehead,availabilityofpowerandsoon.Ahydro-plantworksasabase-loadplantifthereiscontinuouspowergeneration.Thisisespeciallythecaseiftheflowthroughtheriverhastobemaintainedconstantformeetingtheirrigationornavigationrequirements.

Iftheconditionsprevailingatthepowerstationpermitregulatedreleases,theplantcanbeusedtogeneratepeakpower.Forexample,theRoselandplant(France)isdesignedtomeetthepeakwinterdemandfromwaterlargelystoredduringthesummerperiod.

1.6.2Plantscanalsobeclassifiedasfollows:

(a)Conventionalhydro-plantswithvalleystorage.

(b)Run-of-the-riverplants.

(c)Diversiontypeofplants.

(d)Pumpedstorageplants.

(e)Tidal-powerplants.

Valleystorageplants

Inthecaseofconventionalhydro-plants,areservoirhastobecreatedontherivertostoresufficientrainwater,forpowergenerationthroughouttheyearbyconstructionofadam.Thesetypesofplantsaresub-dividedintohigh-headplants,medium-headplants,andlow-headplants(Fig.1.2).

Itisdifficulttolaydownexactranges.However,thefollowinglimitsarerecommended(theyarearbitraryandareasgoodasanyotherarbitraryrangesrecommended):

(i)High-headplants-havingheadsofmorethan250m.

(ii)Medium-headplants-havingheadsbetween50mand250m.

(iii)Low-headplants-havingheadslessthan50m.

Fig.1.2TheGeheyanvalleystorageplant(China)

Today,theplantcapacitiesrangefromafewhundredkilowattstothousandsofmegawattswithindividualunitcapacitiesrangingfromfewhundredkWto700,000kWanditisratherdifficulttoclassifytheplantsoncapacitybasis.

Run-of-the-riverplants

Fig.1.3

\o"ChiefJosephDam"

ChiefJosephDam

near

\o"Bridgeport,Washington"

Bridgeport,Washington

,USA,isamajorrun-of-the-riverstationwithoutasizeablereservoir

Theseplantsgeneratepoweronriverswithacontinuousflowthroughouttheyearwithminorseasonalvariations.Suchconditionsprevailmainlyincoldercountriesbutrarelyintropicalregions.Thestorageneededisminorandcanbecreatedbybuildingabarrageacrosstheriver,whichraisesthewaterlevelcreatingsomeheadforpowergeneration.

Thesitechosenshouldbeonastablereachoftheriverwithstablebedandbanks.Themaximumfloodanticipatedshouldhavealowvalueandwatershouldnotcarrymuchsediment.Creatingasmallpooldoesnotcreateproblemsoflandacquisitionanddoesnotsubstantiallyaltertheoriginaltopographyalongthebanksoftheriverassubmergenceislow.Thispoolmayalsobeusefulfornavigation(Fig.1.3).

SuchplantsarequitepopularinEurope.AchainofsuchplantshavebeenconstructedontheDanubetofullyutilizeitspowerandnavigationpotential.

DiversionCanalPlants

Thesediversiontypeofplantscangeneratepower,takingadvantageoftheleveldifferenceonacurvedmeanderingstretchofariverwithasteepbed-slope.

Adiversioncanalwithaflatslopeinwhichtheflowfromtheriverisdivertedtakesofffromthehigherreachesofthemainriver.Aweirisconstructedattheendofthecanaltocreateasmallpoolofwater,calledtheforebay.Thewaterfromtheforebayisfedbymeansofthepenstockstothepowerhousesituatedinthelowreachoftheriver(Fig.1.4).

Fig.1.4Diversionhydropowerplant

PumpedStoragePlants

Apumped-storageplantusestworeservoirs,onelocatedatamuchhigherelevationthantheother.Duringperiodsoflowdemandforelectricity,suchasnightsandweekends,energyisstoredbyreversingtheturbinesandpumpingwaterfromthelowertotheupperreservoir.Thestoredwatercanlaterbereleasedtoturntheturbinesandgenerateelectricityasitflowsbackintothelowerreservoir.

Thesearepeakloadplantswherewaterispumpeduptoahigherlevelduringoffpeakperiodstogeneratepeakpowerduringthehighdemandperiod.

Fig.1.5Pumpedstorageplant

TidalPowerPlants

Thesedependontidesforgeneratingpower.Thissourceisunconventionalandalotofimportanceisbeinggiventothistypeofplant.

1.6.3ClassificationontheBasisofAvailableHeads

Therearevariousclassificationsofhydroelectricpowerplants.Basedonthetotalheadofwateravailablethehydroelectricpowerplantsareclassifiedintothreetypes:lowheadhydroelectricpowerplants,mediumheadhydroelectricpowerplants,andhighheadhydroelectrcipowerplants.

Lowheadhydroelectricpowerplants

Fig.1.6Cross-sectionofatypicallowheadplant

Thelowheadhydroelectricpowerplantsaretheonesinwhichtheavailablewaterheadislessthan30meters.Thedaminthistypeofpowerplantsisofverysmallheadmaybeevenoffewmetersonly.Incertaincasesweirisusedandinothercasesthereisnodamatallandmerelyflowingwaterintheriverisusedforgenerationofelectricity.Thelowheadtypesofhydroelectricpowerplantscannotstorewaterandelectricityisproducedonlywhensufficientflowofwaterisavailableintheriver.Thustheyproduceelectricityonlyduringparticularseasonswhenabundantflowofwaterisavailable.Sincetheheadofwaterisverysmallinthesehydroelectricpowerplants,theyhavelesserpowerproducingcapacity.InsuchplantsFrancis,PropellerorKaplantypesofturbinesareused.Alsonosurgetankisrequired.

Mediumheadhydroelectricpowerplants

Thehydroelectricpowerplantsinwhichtheworkingheadofwaterismorethan30metersbutlessthan300metersarecalledmediumheadhydroelectricpowerplants.Thesehydroelectricpowerplantareusuallylocatedinthemountainousregionswheretheriversflowsathighheights,thusobtainingthehighheadofthewaterindambecomespossible.Inmediumheadhydroelectricplantsdamsareconstructedbehindwhichtherecanbelargereservoirofwater.Waterfromthereservoircanbetakentothepowergenerationsystemwhereelectricityisgenerated.TheturbinesusedareFrancistypeofthesteelencasedvariety.

Fig.1.7Cross-sectionofatypicalmediumheadplant

Highheadhydroelectricpowerplants

Inthehighheadhydroelectricpowerplantstheheadofwateravailableforproducing

electricity

ismorethan300metersanditcanextendevenupto1000meters.Thesearethemostcommonlyconstructedhydroelectricpowerplants.Inthehighheadhydroelectricpowerplantshugedamsareconstructedacrosstherivers.Thereislargereservoirofwaterinthedamsthatcanstorewateratveryhighheads.Waterismainlystoredduringtherainyseasonsanditcanbeusedthroughouttheyear.Thusthehighheadhydroelectricpowerplantscangenerateelectricitythroughouttheyear.Thehighheadhydroelectric

powerplants

areveryimportantinthenationalgridbecausetheycanbeadjustedeasilytoproducethepoweraspertherequiredloads.

Whenconstructingthehighheadtypesofhydroelectricpowerplantsanumberoffactorsespeciallythoserelatedtotheenvironmentandnaturalecosystemofthelandandwatershouldbeconsidered.Thetotalheightofthedamdependsuponanumberoffactorslikequantityofavailablewater,powertobegenerated,surroundingareas,naturalecosystemetc.

Mainlyintheseplantspressuretunnelisprovidedbeforethesurgetank,whichinturnconnectedtopenstock.Apressuretunnelistakenofffromthereservoirandwaterbroughttothevalvehouse(notshowninpicture)atthestartofthe

\o"Penstocks"

penstocks

.Thepenstocksarehugesteelpipeswhichtakelargequantityofwaterfromthevalvehousetothepowerhouse.Thevalvehousecontainsmainsluicegatesandinadditionautomaticisolatingvalveswhichcomeintooperationwhenthepenstockbursts,cuttingfurthersupplyofwater.Surgetankisanopentankandisbuiltjustinbetweenthebeginningofthepenstocksandthevalvehouse.Inabsenceofsurgetank,thewaterhammercandamagethefixedgates.Normallythehighheadplantsare500metersaboveandforheadsabove500metersPeltonwheelsareused.

Fig.1.8Cross-sectionofatypicalhighheadplant

2HYDRAULICTURBINES

2.1Introduction

Hydraulicturbinesaremachineswhichconvertwaterenergyintomechanicalenergy.Sotheycanbeconsideredasmotorsrunbywater.Waterstoredinareservoirathigherlevelflowsthroughtheturbinetothetailracechannelsituatedatalowerlevelimpartingpotentialenergytotheturbine.

ThetheoreticalfoundationsofthemodernturbinewerelaidbyEuler.ThefirstpracticalturbinesweremadebyFourneyronandBourdin.Forneyroninstalleda40H.P.turbineatSt.Blassius,Francein1835.OtherprominentnamesinthefieldarePelton,FrancisandKaplan.TheimpulseturbineisnamedafterPeltonwhocontributedalottoitsdevelopment.ThemixedflowreactionturbineisnamedafterFrancis,whobuiltthefirstwelldesignedunitin1849.ThemovablebladepropellertypeturbineisnamedafterKaplan.

Thefunctionofawaterturbineistorotatethegeneratorcoupledtoittoproduceelectricity.Theconversionofenergytotheelectricalformisnecessarybecauseelectricalenergycanbetransmittedoverlongdistanceswithproportionatelyverysmalllossescomparedtomechanicalorhydraulicenergy.

2.1.1Sub-systemsofaWaterTurbine

Essentiallyanywaterturbinemusthavethefollowingsub-systems:

(i)Guidepassagestoadmitwatertotherotatingelementwithminimumlossofenergy.

(ii)Agoverningmechanismtoinstantaneouslyadjustthequantityofwaterbeingadmitted,tomatchtheloadfluctuations.

(iii)Arotatingelementorarunnerwheretheconversionofenergytakesplace.Atorqueisdevelopedwhichrotatesthegeneratorcoupledtotheturbine.

(iv)Passagestoleadthewateroutoftheturbinebody.

Inthecaseofwaterturbines,thedensityremainsconstantwhilewaterispassingthroughallabovestages.Insteamturbinesandgasturbinesthedensityvaries.Hencetheirconstructiondiffersmateriallyfromwaterturbines.

2.2ClassificationofWaterTurbines

Thewaterturbinesaredividedintotwomaincategories:theimpulsetypeandreactiontype(Fig.2.1).Intheimpulsetype,waterflowsoutofanozzleintheformofajetsuchthatallthepressureenergyisconvertedintokineticenergy.Thisjethitsoneofaseriesbucketsmountedonarunner.Becauseoftheimpact,therunnerisrotatedabouttheaxis.Thereforetheturbineiscalledtheimpulseturbine.Thewatercomesoutofthenozzleatatmosphericpressure.Hencethepressurethroughouttheturbineisatmospheric,i.e.,constant.Thereforetheturbineisalsocalledaconstantpressureturbine.

Fig.2.1Principleofthebasicimpulseturbine(left)andreactionturbine(right)

Thereactiontypeofturbineworksontheprincipleofreaction.Waterenterstheturbineathighpressureandlowvelocityintheguidepassage.Somepressureenergyisconvertedintokineticenergyandwaterthenenterstherunner(rotor)andpressureenergyissuccessivelyconvertedintokineticenergy.Asthewaterflowingthroughtherunnerisaccelerated,itcreatesareactionontherunnervaneandtherunnerisrotated(Fig.2.2).Asthestaticfluidpressureactsonbothsidesthevane,itdoesnotdoanywork.Workisentirelydoneduetoconversionofenergyintokineticform.Itistobenotedthatrelativevelocitygoesonincreasingfrominlettooutletthoughtheabsolutevelocitydecreases.Inareactionturbinewaterisunderpressureandtheturbineisfilledwithwaterwhenworking.Therefore,theturbinemustbeenclosedinacasingwhichshouldbeabletowithstandthepressure.Inthecaseofanimpulseturbine,thecasingprotectstherunneranddoesnotallowthewatertosplashout.Itdoesnotserveanyhydraulicfunction.Inareactionturbine,watercanbeadmittedallovertherunneratonetime.Therefore,itissometimescalledafulladmissionturbine.

Fig.2.2Francisturbine(reactiontype)

Onlythreeturbineshaveservedthetestoftime.TheyarePeltonturbinesoftheimpulsetypeandFrancisandKaplanturbinesofthereactiontype.

Therefore,thesethreewillbediscussedinsomedetail.Recently,anothertypeofturbineknownasDeriazturbineordiagonalflowturbinehasbeendevelopedwhichisacrossbetweenaFrancisturbineandaKaplanturbine.

2.3PeltonTurbine

ThePeltonturbine(Fig.2.3)isanimpulsetypeofturbine.ItwasnamedafterL.A.Pelon(1829-1908)whoin1880,patentedandimprovedtheformofimpulsewheels.Inimpulseturbine,waterflowsoutofanozzleintheformofajetintheatmosphere,convertinghydraulicenergyintokineticenergy.Thejetdeliversanimpacttooneofaseriesofbladesmountedontherunner,whichstartsrotating.Asthepressureisatmosphericandconstant,thisturbineisalsocalledconstantpressureturbine.Thisturbineisessentiallyahighheadturbineandiscurrentlybeingusedforaheadrangeof300mto1800m.ThespecificspeedrangeisfromNs=4toNs=70.

Theturbineessentiallyconsistsofthreecomponents:(i)theinjector(ii)therunnerand(iii)thecasing.

2.3.1Injector

Thefunctionoftheinjectorare(a)todirectthewaterreceivedfromthepenstockattheproperangleontherunner(b)tovarythequalityofwatertosuitinstantaneousloadconditions,therebygoverningtheturbine.

Theinjectorsarelocatedeitherattheendofabendfittedtothepenstockofinthecaseofmulti-nozzleturbines,orattheendofthedistributionbranches.

Theinjectorconsistsof(a)anozzle(b)aspearrodalsocalledaneedleand(c)adeflector.Thespearrodslidescoaxiallyinthenozzle.Itsmovementcontrolstheareaofthenozzleopeningandthereforethequantityofwaterbeingadmittedtotherunner.

Fig.2.3CrosssectionofaPeltonturbine

2.3.2Runner

Thisconsistsofacylindricaldiscwiththebladesmountedonitsperiphery(Fig.2.4).

Theblades,alsocalledbuckets,lookliketwinhemi-ellipsoidedcupsjoinedinthemiddlebymeansofaridge.Thisshapeisgiventoobtainmaximumefficiencyconditions.Thejetofwaterentersthebucketinthecenter,bifurcatesintotwoportionsandtravelsoverthebucketandleavesattheoutlettips.Thisbifurcationcounterbalancesanyax

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論