2023屆安徽省阜陽市臨泉縣中考數學仿真試卷含解析_第1頁
2023屆安徽省阜陽市臨泉縣中考數學仿真試卷含解析_第2頁
2023屆安徽省阜陽市臨泉縣中考數學仿真試卷含解析_第3頁
2023屆安徽省阜陽市臨泉縣中考數學仿真試卷含解析_第4頁
2023屆安徽省阜陽市臨泉縣中考數學仿真試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.在平面直角坐標系中,將點P(4,﹣3)繞原點旋轉90°得到P1,則P1的坐標為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)2.計算a?a2的結果是()A.aB.a2C.2a2D.a33.如圖所示是放置在正方形網格中的一個,則的值為()A. B. C. D.4.下列計算正確的是()A. B. C. D.5.已知反比例函數y=﹣,當1<x<3時,y的取值范圍是()A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣26.九年級(2)班同學根據興趣分成五個小組,各小組人數分布如圖所示,則在扇形圖中第一小組對應的圓心角度數是()A. B. C. D.7.如圖,PB切⊙O于點B,PO交⊙O于點E,延長PO交⊙O于點A,連結AB,⊙O的半徑OD⊥AB于點C,BP=6,∠P=30°,則CD的長度是()A. B. C. D.28.下列所述圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.線段 B.等邊三角形 C.正方形 D.平行四邊形9.如圖,等腰直角三角形紙片ABC中,∠C=90°,把紙片沿EF對折后,點A恰好落在BC上的點D處,點CE=1,AC=4,則下列結論一定正確的個數是()①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE與△BDF的周長相等.A.1個 B.2個 C.3個 D.4個10.如圖,是的直徑,弦,,,則陰影部分的面積為()A.2π B.π C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.將三角形紙片()按如圖所示的方式折疊,使點落在邊上,記為點,折痕為,已知,,若以點,,為頂點的三角形與相似,則的長度是______.12.如圖,在平面直角坐標系中,點P的坐標為(0,4),直線y=x-3與x軸、y軸分別交于點A、B,點M是直線AB上的一個動點,則PM的最小值為________.13.如圖,若雙曲線()與邊長為3的等邊△AOB(O為坐標原點)的邊OA、AB分別交于C、D兩點,且OC=2BD,則k的值為_____.14.若一元二次方程x2﹣2x﹣m=0無實數根,則一次函數y=(m+1)x+m﹣1的圖象不經過第_____象限.15.若一個多邊形的每一個外角都等于40°,則這個多邊形的內角和是_____.16.如圖,在扇形AOB中,∠AOB=90°,點C為OA的中點,CE⊥OA交于點E,以點O為圓心,OC的長為半徑作交OB于點D,若OA=2,則陰影部分的面積為.三、解答題(共8題,共72分)17.(8分)如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于12②連接MN,分別交AB、AC于點D、O;③過C作CE∥AB交MN于點E,連接AE、CD.(1)求證:四邊形ADCE是菱形;(2)當∠ACB=90°,BC=6,△ADC的周長為18時,求四邊形ADCE的面積.18.(8分)如圖,已知平行四邊形ABCD,將這個四邊形折疊,使得點A和點C重合,請你用尺規做出折痕所在的直線。(保留作圖痕跡,不寫做法)19.(8分)如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.求證:DP是⊙O的切線;若⊙O的半徑為3cm,求圖中陰影部分的面積.20.(8分)已知一個口袋中裝有7個只有顏色不同的球,其中3個白球,4個黑球.(1)求從中隨機抽取出一個黑球的概率是多少?(2)若往口袋中再放入x個白球和y個黑球,從口袋中隨機取出一個白球的概率是14,求y與x21.(8分)(1)計算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;(2)先化簡,再求值:÷(2+),其中a=.22.(10分)如圖,在平面直角坐標系中,A、B為x軸上兩點,C、D為y軸上的兩點,經過點A、C、B的拋物線的一部分C1與經過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封閉曲線稱為“蛋線”.已知點C的坐標為(0,),點M是拋物線C2:(<0)的頂點.(1)求A、B兩點的坐標;(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;(3)當△BDM為直角三角形時,求的值.23.(12分)解不等式組并在數軸上表示解集.24.某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結果提前4天完成了該項綠化工程.該項綠化工程原計劃每天完成多少米2?該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

分順時針旋轉,逆時針旋轉兩種情形求解即可.【詳解】解:如圖,分兩種情形旋轉可得P′(3,4),P″(?3,?4),故選A.【點睛】本題考查坐標與圖形變換——旋轉,解題的關鍵是利用空間想象能力.2、D【解析】a·a2=a3.故選D.3、D【解析】

首先過點A向CB引垂線,與CB交于D,表示出BD、AD的長,根據正切的計算公式可算出答案.【詳解】解:過點A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點睛】此題主要考查了銳角三角函數的定義,關鍵是掌握正切:銳角A的對邊a與鄰邊b的比叫做∠A的正切,記作tanA.4、A【解析】

原式各項計算得到結果,即可做出判斷.【詳解】A、原式=,正確;

B、原式不能合并,錯誤;

C、原式=,錯誤;

D、原式=2,錯誤.

故選A.【點睛】此題考查了實數的運算,熟練掌握運算法則是解本題的關鍵.5、D【解析】

根據反比例函數的性質可以求得y的取值范圍,從而可以解答本題.【詳解】解:∵反比例函數y=﹣,∴在每個象限內,y隨x的增大而增大,∴當1<x<3時,y的取值范圍是﹣6<y<﹣1.故選D.【點睛】本題考查了反比例函數的性質,解答本題的關鍵是明確題意,求出相應的y的取值范圍,利用反比例函數的性質解答.6、C【解析】試題分析:由題意可得,第一小組對應的圓心角度數是:×360°=72°,故選C.考點:1.扇形統計圖;2.條形統計圖.7、C【解析】

連接OB,根據切線的性質與三角函數得到∠POB=60°,OB=OD=2,再根據等腰三角形的性質與三角函數得到OC的長,即可得到CD的長.【詳解】解:如圖,連接OB,∵PB切⊙O于點B,∴∠OBP=90°,∵BP=6,∠P=30°,∴∠POB=60°,OD=OB=BPtan30°=6×=2,∵OA=OB,∴∠OAB=∠OBA=30°,∵OD⊥AB,∴∠OCB=90°,∴∠OBC=30°,則OC=OB=,∴CD=.故選:C.【點睛】本題主要考查切線的性質與銳角的三角函數,解此題的關鍵在于利用切線的性質得到相關線段與角度的值,再根據圓和等腰三角形的性質求解即可.8、B【解析】

根據中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、線段,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;

B、等邊三角形,是軸對稱圖形但不是中心對稱圖形,故本選項符合題意;

C、正方形,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;

D、平行四邊形,不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.

故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.9、D【解析】等腰直角三角形紙片ABC中,∠C=90°,∴∠A=∠B=45°,由折疊可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正確;由折疊可得,DE=AE=3,∴CD=,∴BD=BC﹣DC=4﹣>1,∴BD>CE,故②正確;∵BC=4,CD=4,∴BC=CD,故③正確;∵AC=BC=4,∠C=90°,∴AB=4,∵△DCE的周長=1+3+2=4+2,由折疊可得,DF=AF,∴△BDF的周長=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,∴△DCE與△BDF的周長相等,故④正確;故選D.點睛:本題主要考查了折疊問題,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.10、D【解析】分析:連接OD,則根據垂徑定理可得出CE=DE,繼而將陰影部分的面積轉化為扇形OBD的面積,代入扇形的面積公式求解即可.詳解:連接OD,∵CD⊥AB,∴(垂徑定理),故即可得陰影部分的面積等于扇形OBD的面積,又∵∴(圓周角定理),∴OC=2,故S扇形OBD=即陰影部分的面積為.故選D.點睛:考查圓周角定理,垂徑定理,扇形面積的計算,熟記扇形的面積公式是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、或2【解析】

由折疊性質可知B’F=BF,△B’FC與△ABC相似,有兩種情況,分別對兩種情況進行討論,設出B’F=BF=x,列出比例式方程解方程即可得到結果.【詳解】由折疊性質可知B’F=BF,設B’F=BF=x,故CF=4-x當△B’FC∽△ABC,有,得到方程,解得x=,故BF=;當△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;綜上BF的長度可以為或2.【點睛】本題主要考查相似三角形性質,解題關鍵在于能夠對兩個相似三角形進行分類討論.12、【解析】

認真審題,根據垂線段最短得出PM⊥AB時線段PM最短,分別求出PB、OB、OA、AB的長度,利用△PBM∽△ABO,即可求出本題的答案【詳解】解:如圖,過點P作PM⊥AB,則:∠PMB=90°,當PM⊥AB時,PM最短,因為直線y=x﹣3與x軸、y軸分別交于點A,B,可得點A的坐標為(4,0),點B的坐標為(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴,即:,所以可得:PM=.13、.【解析】

過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,設OC=2x,則BD=x,在Rt△OCE中,∠COE=60°,則OE=x,CE=,則點C坐標為(x,),在Rt△BDF中,BD=x,∠DBF=60°,則BF=,DF=,則點D的坐標為(,),將點C的坐標代入反比例函數解析式可得:,將點D的坐標代入反比例函數解析式可得:,則,解得:,(舍去),故=.故答案為.考點:1.反比例函數圖象上點的坐標特征;2.等邊三角形的性質.14、一【解析】∵一元二次方程x2-2x-m=0無實數根,

∴△=4+4m<0,解得m<-1,

∴m+1<0,m-1<0,

∴一次函數y=(m+1)x+m-1的圖象經過二三四象限,不經過第一象限.

故答案是:一.15、【解析】

根據任何多邊形的外角和都是360度,先利用360°÷40°求出多邊形的邊數,再根據多邊形的內角和公式(n-2)?180°計算即可求解.【詳解】解:多邊形的邊數是:360°÷40°=9,

則內角和是:(9-2)?180°=1260°.

故答案為1260°.【點睛】本題考查正多邊形的外角與邊數的關系,求出多邊形的邊數是解題的關鍵.16、.【解析】試題解析:連接OE、AE,∵點C為OA的中點,∴∠CEO=30°,∠EOC=60°,∴△AEO為等邊三角形,∴S扇形AOE=∴S陰影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===.三、解答題(共8題,共72分)17、(1)詳見解析;(2)1.【解析】

(1)利用直線DE是線段AC的垂直平分線,得出AC⊥DE,即∠AOD=∠COE=90°,從而得出△AOD≌△COE,即可得出四邊形ADCE是菱形.

(2)利用當∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性質和勾股定理得出OD和AO的長,即根據菱形的性質得出四邊形ADCE的面積.【詳解】(1)證明:由題意可知:∵分別以A、C為圓心,以大于12∴直線DE是線段AC的垂直平分線,∴AC⊥DE,即∠AOD=∠COE=90°;且AD=CD、AO=CO,又∵CE∥AB,∴∠1=∠2,在△AOD和△COE中∠1=∠2∠AOD=∠COE=∴△AOD≌△COE(AAS),∴OD=OE,∵A0=CO,DO=EO,∴四邊形ADCE是平行四邊形,又∵AC⊥DE,∴四邊形ADCE是菱形;(2)解:當∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,∴ODBC又∵BC=6,∴OD=3,又∵△ADC的周長為18,∴AD+AO=9,即AD=9﹣AO,∴OD=A可得AO=4,∴DE=6,AC=8,∴S=1【點睛】考查線段垂直平分線的性質,菱形的判定,相似三角形的判定與性質等,綜合性比較強.18、答案見解析【解析】

根據軸對稱的性質作出線段AC的垂直平分線即可得.【詳解】如圖所示,直線EF即為所求.【點睛】本題主要考查作圖-軸對稱變換,解題的關鍵是掌握軸對稱變換的性質和線段中垂線的尺規作圖.19、(1)證明見解析;(2).【解析】

(1)連接OD,求出∠AOD,求出∠DOB,求出∠ODP,根據切線判定推出即可.(2)求出OP、DP長,分別求出扇形DOB和△ODP面積,即可求出答案.【詳解】解:(1)證明:連接OD,∵∠ACD=60°,∴由圓周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD為半徑,∴DP是⊙O切線.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm.∴圖中陰影部分的面積20、(1)47.(2)y=3x+5【解析】試題分析:(1)根據取出黑球的概率=黑球的數量÷球的總數量得出答案;(2)根據概率的計算方法得出方程,從求出函數關系式.試題解析:(1)取出一個黑球的概率P=(2)∵取出一個白球的概率P=∴∴12+4x=7+x+y∴y與x的函數關系式為:y=3x+5.考點:概率21、(1)5+;(2)【解析】試題分析:(1)先分別進行絕對值化簡,0指數冪、負指數冪的計算,特殊三角函數值、二次根式的化簡,然后再按運算順序進行計算即可;(2)括號內先通分進行加法運算,然后再進行分式除法運算,最后代入數值進行計算即可.試題解析:(1)原式=2﹣1+4﹣2×+2=2﹣1+4﹣+2=5+;(2)原式==,當a=時,原式==.22、(1)A(,0)、B(3,0).(2)存在.S△PBC最大值為(3)或時,△BDM為直角三角形.【解析】

(1)在中令y=0,即可得到A、B兩點的坐標.(2)先用待定系數法得到拋物線C1的解析式,由S△PBC=S△POC+S△BOP–S△BOC得到△PBC面積的表達式,根據二次函數最值原理求出最大值.(3)先表示出DM2,BD2,MB2,再分兩種情況:①∠BMD=90°時;②∠BDM=90°時,討論即可求得m的值.【詳解】解:(1)令y=0,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論