江西省撫州市臨川區二中2023學年高三下學期一模考試數學試題(含解析)_第1頁
江西省撫州市臨川區二中2023學年高三下學期一模考試數學試題(含解析)_第2頁
江西省撫州市臨川區二中2023學年高三下學期一模考試數學試題(含解析)_第3頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023學年高考數學模擬測試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.42.下列說法正確的是()A.“若,則”的否命題是“若,則”B.在中,“”是“”成立的必要不充分條件C.“若,則”是真命題D.存在,使得成立3.已知復數,若,則的值為()A.1 B. C. D.4.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.5.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設,則的取值范圍是()A. B. C. D.6.如圖是國家統計局于2020年1月9日發布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環比)根據該折線圖,下列結論錯誤的是()A.2019年12月份,全國居民消費價格環比持平B.2018年12月至2019年12月全國居民消費價格環比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格7.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.8.函數的部分圖像大致為()A. B.C. D.9.已知非零向量滿足,若夾角的余弦值為,且,則實數的值為()A. B. C.或 D.10.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.11.函數的定義域為,集合,則()A. B. C. D.12.已知拋物線的焦點與雙曲線的一個焦點重合,且拋物線的準線被雙曲線截得的線段長為,那么該雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線(a>0,b>0)的一條漸近線方程為,則該雙曲線的離心率為_______.14.在的展開式中,的系數為________.15.農歷五月初五是端午節,民間有吃粽子的習慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節大家都會品嘗的食品,傳說這是為了紀念戰國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內有一球,則該球體積的最大值為____.16.(5分)已知,且,則的值是____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,函數.(1)若,求的單調遞增區間;(2)若,求的值.18.(12分)等差數列的公差為2,分別等于等比數列的第2項,第3項,第4項.(1)求數列和的通項公式;(2)若數列滿足,求數列的前2020項的和.19.(12分)如圖,在中,,,點在線段上.(1)若,求的長;(2)若,,求的面積.20.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.21.(12分)數列的前項和為,且.數列滿足,其前項和為.(1)求數列與的通項公式;(2)設,求數列的前項和.22.(10分)已知數列滿足對任意都有,其前項和為,且是與的等比中項,.(1)求數列的通項公式;(2)已知數列滿足,,設數列的前項和為,求大于的最小的正整數的值.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【答案解析】

解出,分別代入選項中的值進行驗證.【題目詳解】解:,.當時,,此時不成立.當時,,此時成立,符合題意.故選:B.【答案點睛】本題考查了不等式的解法,考查了集合的關系.2、C【答案解析】

A:否命題既否條件又否結論,故A錯.B:由正弦定理和邊角關系可判斷B錯.C:可判斷其逆否命題的真假,C正確.D:根據冪函數的性質判斷D錯.【題目詳解】解:A:“若,則”的否命題是“若,則”,故A錯.B:在中,,故“”是“”成立的必要充分條件,故B錯.C:“若,則”“若,則”,故C正確.D:由冪函數在遞減,故D錯.故選:C【答案點睛】考查判斷命題的真假,是基礎題.3、D【答案解析】由復數模的定義可得:,求解關于實數的方程可得:.本題選擇D選項.4、C【答案解析】

過作于,連接,易知,,從而可證平面,進而可知,當最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【題目詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【答案點睛】本題考查三棱錐體積的最大值,考查學生的空間想象能力與計算求解能力,屬于中檔題.5、C【答案解析】

以為坐標原點,以分別為x軸,y軸建立直角坐標系,利用向量的坐標運算計算即可解決.【題目詳解】以為坐標原點建立如圖所示的直角坐標系,不妨設正方形的邊長為1,則,,設,則,所以,且,故.故選:C.【答案點睛】本題考查利用向量的坐標運算求變量的取值范圍,考查學生的基本計算能力,本題的關鍵是建立適當的直角坐標系,是一道基礎題.6、D【答案解析】

先對圖表數據的分析處理,再結簡單的合情推理一一檢驗即可【題目詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環比是負的,所以B錯誤;設2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【答案點睛】此題考查了對圖表數據的分析處理能力及進行簡單的合情推理,屬于中檔題.7、B【答案解析】由三視圖知:幾何體是直三棱柱消去一個三棱錐,如圖:

直三棱柱的體積為,消去的三棱錐的體積為,

∴幾何體的體積,故選B.點睛:本題考查了由三視圖求幾何體的體積,根據三視圖判斷幾何體的形狀及相關幾何量的數據是解答此類問題的關鍵;幾何體是直三棱柱消去一個三棱錐,結合直觀圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.8、A【答案解析】

根據函數解析式,可知的定義域為,通過定義法判斷函數的奇偶性,得出,則為偶函數,可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【題目詳解】解:因為,所以的定義域為,則,∴為偶函數,圖象關于軸對稱,排除選項,且當時,,排除選項,所以正確.故選:A.【答案點睛】本題考查由函數解析式識別函數圖象,利用函數的奇偶性和特殊值法進行排除.9、D【答案解析】

根據向量垂直則數量積為零,結合以及夾角的余弦值,即可求得參數值.【題目詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【答案點睛】本題考查向量數量積的應用,涉及由向量垂直求參數值,屬基礎題.10、D【答案解析】

設,,作為一個基底,表示向量,,,然后再用數量積公式求解.【題目詳解】設,,所以,,,所以.故選:D【答案點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎題.11、A【答案解析】

根據函數定義域得集合,解對數不等式得到集合,然后直接利用交集運算求解.【題目詳解】解:由函數得,解得,即;又,解得,即,則.故選:A.【答案點睛】本題考查了交集及其運算,考查了函數定義域的求法,是基礎題.12、A【答案解析】

由拋物線的焦點得雙曲線的焦點,求出,由拋物線準線方程被曲線截得的線段長為,由焦半徑公式,聯立求解.【題目詳解】解:由拋物線,可得,則,故其準線方程為,拋物線的準線過雙曲線的左焦點,.拋物線的準線被雙曲線截得的線段長為,,又,,則雙曲線的離心率為.故選:.【答案點睛】本題考查拋物線的性質及利用過雙曲線的焦點的弦長求離心率.弦過焦點時,可結合焦半徑公式求解弦長.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】

根據題意,由雙曲線的漸近線方程可得,即a=2b,進而由雙曲線的幾何性質可得cb,由雙曲線的離心率公式計算可得答案.【題目詳解】根據題意,雙曲線的漸近線方程為y=±x,又由該雙曲線的一條漸近線方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線的離心率e;故答案為:.【答案點睛】本題考查雙曲線的幾何性質,關鍵是分析a、b之間的關系,屬于基礎題.14、【答案解析】

根據二項展開式定理,求出含的系數和含的系數,相乘即可.【題目詳解】的展開式中,所求項為:,的系數為.

故答案為:.【答案點睛】本題考查二項展開式定理的應用,屬于基礎題.15、【答案解析】

(1)先算出正四面體的體積,六面體的體積是正四面體體積的倍,即可得出該六面體的體積;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,求出球的半徑,再代入球的體積公式可得答案.【題目詳解】(1)每個三角形面積是,由對稱性可知該六面是由兩個正四面合成的,可求出該四面體的高為,故四面體體積為,因此該六面體體積是正四面體的2倍,所以六面體體積是;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,由于圖像的對稱性,內部的小球要是體積最大,就是球要和六個面相切,連接球心和五個頂點,把六面體分成了六個三棱錐設球的半徑為,所以,所以球的體積.故答案為:;.【答案點睛】本題考查由平面圖形折成空間幾何體、考查空間幾何體的的表面積、體積計算,考查邏輯推理能力和空間想象能力求解球的體積關鍵是判斷在什么情況下,其體積達到最大,考查運算求解能力.16、【答案解析】

由于,且,則,得,則.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【答案解析】

(1)利用三角恒等變換思想化簡函數的解析式為,然后解不等式,可得出函數的單調遞增區間;(2)由得出,并求出的值,利用兩角差的正弦公式可求出的值.【題目詳解】(1)當時,,由,得,因此,函數的單調遞增區間為;(2),,,,,,.【答案點睛】本題主要考查三角函數的圖象和性質,利用三角函數公式將函數進行化簡是解決本題的關鍵,屬中等題.18、(1),;(2).【答案解析】

(1)根據題意同時利用等差、等比數列的通項公式即可求得數列和的通項公式;(2)求出數列的通項公式,再利用錯位相減法即可求得數列的前2020項的和.【題目詳解】(1)依題意得:,所以,所以解得設等比數列的公比為,所以又(2)由(1)知,因為①當時,②由①②得,,即,又當時,不滿足上式,.數列的前2020項的和設③,則④,由③④得:,所以,所以.【答案點睛】本題考查等差數列和等比數列的通項公式、性質,錯位相減法求和,考查學生的邏輯推理能力,化歸與轉化能力及綜合運用數學知識解決問題的能力.考查的核心素養是邏輯推理與數學運算.是中檔題.19、(1)(2)【答案解析】

(1)先根據平方關系求出,再根據正弦定理即可求出;(2)分別在和中,根據正弦定理列出兩個等式,兩式相除,利用題目條件即可求出,再根據余弦定理求出,即可根據求出的面積.【題目詳解】(1)由,得,所以.由正弦定理得,,即,得.(2)由正弦定理,在中,,①在中,,②又,,,由得,由余弦定理得,即,解得,所以的面積.【答案點睛】本題主要考查正余弦定理在解三角形中的應用,以及三角形面積公式的應用,意在考查學生的數學運算能力,屬于基礎題.20、(1)證明見解析(2)【答案解析】

(1)取中點為,連接,,,,根據線段關系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點,,,為,,軸建立空間直角坐標系,寫出各個點的坐標,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【題目詳解】(1)證明:取中點為,連接,,,如下圖所示:因為,,,所以,故為等邊三角形,則.連接,因為,,所以為等邊三角形,則.又,所以平面.因為平面,所以.(2)由(1)知,因為平面平面,平面,所以平面,以為原點,,,為,,軸建立如圖所示的空間直角坐標系,易求,則,,,,則,,.設平面的法向量,則即令,則,,故.設平面的法向量,則則令,則,,故,所以.由圖可知,二面角為鈍二面角角,所以二面角的余弦值為.【答案點睛】本題考查線面垂直的判定,由線面垂直判定線線垂直,由空間向量法求平面與平面形成二面角的大小,屬于中檔題.21、(1),;(2).【答案解析】

(1)令可求得的值,令,由得出,兩式相減可推導出數列為等比數列,確定該數列的公比,利用等比數列的通項公式可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論