![[PPT]材料力學課件之彎曲變形_第1頁](http://file4.renrendoc.com/view/feb2fa6b164ed0b1cf14f7f8b296d3d9/feb2fa6b164ed0b1cf14f7f8b296d3d91.gif)
![[PPT]材料力學課件之彎曲變形_第2頁](http://file4.renrendoc.com/view/feb2fa6b164ed0b1cf14f7f8b296d3d9/feb2fa6b164ed0b1cf14f7f8b296d3d92.gif)
![[PPT]材料力學課件之彎曲變形_第3頁](http://file4.renrendoc.com/view/feb2fa6b164ed0b1cf14f7f8b296d3d9/feb2fa6b164ed0b1cf14f7f8b296d3d93.gif)
![[PPT]材料力學課件之彎曲變形_第4頁](http://file4.renrendoc.com/view/feb2fa6b164ed0b1cf14f7f8b296d3d9/feb2fa6b164ed0b1cf14f7f8b296d3d94.gif)
![[PPT]材料力學課件之彎曲變形_第5頁](http://file4.renrendoc.com/view/feb2fa6b164ed0b1cf14f7f8b296d3d9/feb2fa6b164ed0b1cf14f7f8b296d3d95.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第7章 彎曲變形 簡單超靜定梁7 概 述研究范圍:等直梁在對稱彎曲時位移的計算。研究目的:對梁作剛度校核; 解超靜定梁(變形幾何條件提供補充方程)。1.撓度:橫截面形心沿垂直于軸線方向的線位移。用v表示。 與 y同向為正,反之為負。2.轉角:橫截面繞其中性軸相對于原位置轉動的角度。用 表示,順時針轉動為正,反之為負。二、撓曲線: 變形后,軸線變為連續光滑曲線,該曲線稱為撓曲線。 平面彎曲時,梁的撓曲線為在外力作用平面內的平面曲線。一、度量梁變形的兩個基本位移量PxvCqC1yq橫截面上其他點的位置隨之確定。注:上述正負號規定是相對于圖示坐標系而言的。三、撓度與轉角的關系1.梁的撓曲線方程沿梁軸
2、線方向各橫截面撓度的變化規律。2.轉角方程3.小變形時,撓度與轉角的關系四、計算彎曲變形的方法積分法;共軛梁法;疊加法;能量法;初參數法。7-2 梁的撓曲線近似微分方程1.平面彎曲時,彎矩與曲率間的物理關系 公式推導中應用了胡克定律,并不計剪力對彎曲變形的影響,故適用于線彈性范圍、小變形的情況。2.高等數學中,平面曲線的曲率公式小變形,梁的撓曲線是一條平緩曲線,轉角 很小, 。 故3.梁的撓曲線近似微分方程yxM0yxM0 梁的撓曲線近似微分方程(1)不計剪力對彎曲變形的影響;(2)忽略 項。4.正負號選取7-3 用積分法求梁的撓度和轉角 一、求撓曲線方程的積分法由撓曲線的近似微分方程,積分兩
3、次,即得梁截面的轉角和撓度方程。撓度方程轉角方程二、積分法的特征 1適用于細長梁在線彈性范圍、小變形情況下的平面彎曲。二、積分法的特征PABCPD三、變形的幾何相容條件2.積分應遍及全梁。在梁的彎矩方程或抗彎剛度不連續處,其 撓曲線的近似微分方程應分段列出,并相應地分段積分。3.積分常數由變形的幾何相容條件確定。包括邊界支座位移條件 和變形光滑、連續條件。 4.積分法的優點是普遍適用于求解等截面或變截面梁在各種載 荷情況下的轉角、撓度方程。當僅需計算個別截面的撓度、轉 角時,其計算過程顯得繁冗支座位移條件:連續、光滑條件P例 求下列各等截面直梁的彈性曲線、最大撓度及最大轉角。例解:建立坐標系并
4、寫出彎矩方程寫出微分方程的積分并積分xyPLa1.分段連續彎矩方程必須從原點沿x的正向依次寫出;2.對含(x-a)項不可展開,把它視 為新變量積分;3.中間的分布載荷應延伸到中斷,并 加上反向分布力;4.按上述方法積分,中間各段積分常 數相等。注意:7-5 按疊加原理求梁的撓度與轉角 一、求撓度、轉角的疊加法 1.疊加原理:梁在各種載荷同時作用下任一截面的撓度或轉角,等于同一梁在每種載荷下、同一截面撓度和轉角的總和。 2.疊加原理的限制:疊加原理僅適用于線性函數。為此,要求撓度、轉角為梁上載荷的線性函數,即 (1)彎矩M與載荷成線性關系,要求梁的變形為微小變形,即略去各載荷引起梁的水平位移;(
5、2)曲率 與彎矩M成線性關系,要求梁處于線彈性范圍,即滿足胡克定律。(3)撓曲率 與M成線性關系,要求梁的變形為微小變形,即其截面轉角 ,且 與1相比很小,可略去不計。二、疊加法的特征 1.各載荷同時作用下撓度、轉角,等于單獨作用下撓度、轉角的總和,應該是幾何和(矢量和)。同一方向的幾何和即為代數和。 2.梁在簡單載荷作用下的撓度、轉角應為巳知,或有變形表,可供查找。 3疊加法適宜于求梁個別截面的撓度、轉角值。三、疊加方法示例1.直接疊加法例按疊加原理求A點轉角和C點撓度。2.間接疊加法 結構形式疊加(逐段剛化法) 原理說明。一、梁的剛度條件其中稱為許用轉角;v/L稱為許用撓跨比。通常依此條件
6、進行如下三種剛度計算:、校核剛度:、設計截面尺寸;、設計載荷。(但:對于土建工程,強度常處于主要地位,剛度常處于從屬地位。特殊構件例外)7-6 梁的剛度校核例二、提高梁彎曲剛度的一些措施1.增大梁的抗彎剛度EI2.調整跨長和改變結構PL/2L/2Mx+PL/4P=qLL/54L/5對稱MxqL2/10調整跨長和改變結構MxqLL/5qL/5402qL502qL-MxqL/2L/2322qL-Mx 同類材料,“E”值相差不多,“jx”相差較大,故換用同類材料只能提高強度,不能提高剛度和穩定性。 不同類材料,E和G都相差很多(鋼E=200GPa , 銅E=100GPa),故可選用不同的材料以達到提
7、高剛度和穩定性的目的。但是,改換材料,其原料費用也會隨之發生很大的改變!五、選用高強度材料,提高許用應力值7-7 簡單超靜定梁的解法 靜不定的次數: 凡未知反力(或內力)數超過靜力平衡方程數的個數,稱為靜不定的次數。 多余約束: 在靜不定梁中多于維持靜力平衡(且滿足幾何不變形)的約束稱為多余約束。靜不定梁必存在多余約束,且其多余約束的數目等于靜不定的次數。 多余約束反力: 相應于多余約束的約束反力。一、幾個概念基本靜定體系: 靜不定梁解除多余約束后的靜定系統, 稱為原體系的基本靜定體系二、基本靜定體系的選擇原則1.基本靜定體系應是能維持靜力平衡和幾何不變的系統。2.基本靜定體系應便于計算,其截面位移可在彎曲變形表中 查得。3.的基本靜定體系的選取可以是不同的,但其解答是唯一的。 三、靜不定梁的解題步驟1.選擇多余約束,確定基本靜定體系。基本靜定體系上應作 用有原靜不定粱的載荷以及未知的多余約束反力。2.比較基本靜定體系與靜不定梁在多余約束處的變形,并用 疊加法列出相應的變形相容方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 浮腫的診斷與鑒別診斷
- 法律咨詢服務中介合同模板
- 城市公交天然氣運輸合同
- 艾滋病防治健康知識講座
- 水痘患者的治療與護理
- 凈業環保水處理設備生產建設項目可行性研究報告寫作模板-備案審批
- 報廢汽車拆解回收再利用項目可行性研究報告寫作模板-備案審批
- 玻璃儀器培訓
- 2024漯河市召陵區中等專業學校工作人員招聘考試及答案
- 2024湖南中德交通技工學校工作人員招聘考試及答案
- 甘肅省衛生健康委公務員考試招聘112人往年題考
- 數字化賦能護理質量管理研究進展與價值共創視角
- 沖壓模具設計與制造工藝考試復習題庫(含答案)
- 2025牡丹江輔警考試題庫
- 2024年新高考廣西高考生物真題試卷及答案
- 2024-2025學年北師大版七年級數學下冊期中模擬卷
- 2025部編人教版小學二年級語文下冊全冊教案
- 電網工程設備材料信息參考價(2024年第四季度)
- 考試失利后的心態調整與復盤
- 2023中國偏頭痛診斷與治療指南
- 2025年度潤滑油產品研發與市場銷售合作協議2篇
評論
0/150
提交評論