




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2答題前,認真閱讀答題紙上的注意事項,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知數(shù)列是公差為的等差數(shù)列,且成等比數(shù)列,則( )A4B3C2D12已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是( )ABCD3已知集合A0,1,B0,1,2,則滿足ACB的集合
2、C的個數(shù)為()A4B3C2D14設是虛數(shù)單位,則( )ABC1D25雙曲線:(,)的一個焦點為(),且雙曲線的兩條漸近線與圓:均相切,則雙曲線的漸近線方程為( )ABCD6已知滿足,則的取值范圍為( )ABCD7在一個數(shù)列中,如果,都有(為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,叫做這個數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,公積為,則( )ABCD8在展開式中的常數(shù)項為A1B2C3D79盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數(shù),則( )A,B,C,D,10在中,角所對的邊分別為,已知,則( )A或BCD或11的內角的對邊分別為,
3、若,則內角( )ABCD12如圖,在棱長為4的正方體中,E,F(xiàn),G分別為棱 AB,BC,的中點,M為棱AD的中點,設P,Q為底面ABCD內的兩個動點,滿足平面EFG,則的最小值為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13將含有甲、乙、丙的6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發(fā)宣傳資料,則甲、乙至少一人參加指揮交通且甲、丙不在同一個組的概率為_.14(5分)已知曲線的方程為,其圖象經過點,則曲線在點處的切線方程是_15已知x,y滿足約束條件x-y-10 x+y-302y+10,則z=2x-y的最小值為_16在平面直角坐標系中,點在單位圓上,
4、設,且若,則的值為_.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知曲線的參數(shù)方程為為參數(shù), 曲線的參數(shù)方程為為參數(shù)).(1)求與的普通方程;(2)若與相交于,兩點,且,求的值.18(12分)已知函數(shù).(1)解不等式;(2)若,求證:.19(12分)在直角坐標系中,已知點,若以線段為直徑的圓與軸相切.(1)求點的軌跡的方程;(2)若上存在兩動點(A,B在軸異側)滿足,且的周長為,求的值.20(12分)已知正實數(shù)滿足 .(1)求 的最小值.(2)證明:21(12分)某保險公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險,現(xiàn)從名參保人員中隨機抽取名作為樣本進行分析
5、,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應交納的保費如下表所示. 據(jù)統(tǒng)計,該公司每年為這一萬名參保人員支出的各種費用為一百萬元.年齡(單位:歲)保費(單位:元)(1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數(shù)時的最小值;(2)經調查,年齡在之間的老人每人中有人患該項疾病(以此頻率作為概率).該病的治療費為元,如果參保,保險公司補貼治療費元.某老人年齡歲,若購買該項保險(取中的).針對此疾病所支付的費用為元;若沒有購買該項保險,針對此疾病所支付的費用為元.試比較和的期望值大小,并判斷該老人購買此項保險是否劃算?22(10分)已知橢圓,上、下頂點分別是、
6、,上、下焦點分別是、,焦距為,點在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動點,過作與軸平行的直線,直線與交于點,直線與直線交于點,判斷是否為定值,說明理由.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】根據(jù)等差數(shù)列和等比數(shù)列公式直接計算得到答案.【詳解】由成等比數(shù)列得,即,已知,解得.故選:.【點睛】本題考查了等差數(shù)列,等比數(shù)列的基本量的計算,意在考查學生的計算能力.2A【解析】由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結合即可解決.【詳解】由已知可得,所以,從而雙曲線方程為,不
7、妨設點在雙曲線右支上運動,則,當時,此時,所以,所以;當軸時,所以,又為銳角三角形,所以.故選:A.【點睛】本題考查雙曲線的性質及其應用,本題的關鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.3A【解析】由可確定集合中元素一定有的元素,然后列出滿足題意的情況,得到答案.【詳解】由可知集合中一定有元素2,所以符合要求的集合有,共4種情況,所以選A項.【點睛】考查集合并集運算,屬于簡單題.4C【解析】由,可得,通過等號左右實部和虛部分別相等即可求出的值.【詳解】解:, ,解得:.故選:C.【點睛】本題考查了復數(shù)的運算,考查了復數(shù)相等的涵義.對于復數(shù)的運算類問題,易錯點是把 當成進行
8、運算.5A【解析】根據(jù)題意得到,化簡得到,得到答案.【詳解】根據(jù)題意知:焦點到漸近線的距離為,故,故漸近線為.故選:.【點睛】本題考查了直線和圓的位置關系,雙曲線的漸近線,意在考查學生的計算能力和轉化能力.6C【解析】設,則的幾何意義為點到點的斜率,利用數(shù)形結合即可得到結論.【詳解】解:設,則的幾何意義為點到點的斜率,作出不等式組對應的平面區(qū)域如圖:由圖可知當過點的直線平行于軸時,此時成立;取所有負值都成立;當過點時,取正值中的最小值,此時;故的取值范圍為;故選:C.【點睛】本題考查簡單線性規(guī)劃的非線性目標函數(shù)函數(shù)問題,解題時作出可行域,利用目標函數(shù)的幾何意義求解是解題關鍵對于直線斜率要注意斜
9、率不存在的直線是否存在7B【解析】計算出的值,推導出,再由,結合數(shù)列的周期性可求得數(shù)列的前項和.【詳解】由題意可知,則對任意的,則,由,得,因此,.故選:B.【點睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導出數(shù)列的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.8D【解析】求出展開項中的常數(shù)項及含的項,問題得解。【詳解】展開項中的常數(shù)項及含的項分別為:,,所以展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查了二項式定理中展開式的通項公式及轉化思想,考查計算能力,屬于基礎題。9C【解析】根據(jù)古典概型概率計算公式,計算出概率并求得數(shù)學期望,由此判斷出正確選項.【詳解】表示取出的為一個白
10、球,所以.表示取出一個黑球,所以.表示取出兩個球,其中一黑一白,表示取出兩個球為黑球,表示取出兩個球為白球,所以.所以,.故選:C【點睛】本小題主要考查離散型隨機變量分布列和數(shù)學期望的計算,屬于中檔題.10D【解析】根據(jù)正弦定理得到,化簡得到答案.【詳解】由,得,或,或故選:【點睛】本題考查了正弦定理解三角形,意在考查學生的計算能力.11C【解析】由正弦定理化邊為角,由三角函數(shù)恒等變換可得【詳解】,由正弦定理可得,三角形中,故選:C【點睛】本題考查正弦定理,考查兩角和的正弦公式和誘導公式,掌握正弦定理的邊角互化是解題關鍵12C【解析】把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上
11、,利用對稱性可得的最小值【詳解】如圖,分別取的中點,連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,正方體中平面,從而有,在以為圓心1為半徑的四分之一圓(圓在正方形內的部分)上,顯然關于直線的對稱點為,當且僅當共線時取等號,所求最小值為故選:C【點睛】本題考查空間距離的最小值問題,解題時作出正方體的完整截面求出點軌跡是第一個難點,第二個難點是求出點軌跡,第三個難點是利用對稱性及圓的性質求得最小值二、填空題:本題共4小題,每小題5分,共20分。13【解析】先求出總的基本事件數(shù),再求出甲、乙至少一人參加指揮交通且甲、丙
12、不在同一組的基本事件數(shù),然后根據(jù)古典概型求解【詳解】6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發(fā)宣傳資料的基本事件總數(shù)共有個,甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件個數(shù)有:個,所以甲、乙至少一人參加指揮交通且甲、丙不在同一組的概率為.故答案為:【點睛】本題主要考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是中檔題.14【解析】依題意,將點的坐標代入曲線的方程中,解得.由,得,則曲線在點處切線的斜率,所以在點處的切線方程是,即1532【解析】先根據(jù)約束條件畫出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【詳解】x,y
13、滿足約束條件x-y-10 x+y-302y+10,畫出可行域如圖所示.目標函數(shù)z=2x-y,即y=2x-z.平移直線y=2x-z,截距最大時即為所求.2y+1=0 x-y-1=0點A(12,-12),z在點A處有最小值:z212+12=32,故答案為:32.【點睛】本題主要考查線性規(guī)劃的基本應用,利用數(shù)形結合,結合目標函數(shù)的幾何意義是解決此類問題的基本方法16【解析】根據(jù)三角函數(shù)定義表示出,由同角三角函數(shù)關系式結合求得,而,展開后即可由余弦差角公式求得的值.【詳解】點在單位圓上,設,由三角函數(shù)定義可知,因為,則,所以由同角三角函數(shù)關系式可得,所以 故答案為:.【點睛】本題考查了三角函數(shù)定義,同
14、角三角函數(shù)關系式的應用,余弦差角公式的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1),(2)0【解析】(1)分別把兩曲線參數(shù)方程中的參數(shù)消去,即可得到普通方程;(2)把直線的參數(shù)方程代入的普通方程,化為關于的一元二次方程,再由根與系數(shù)的關系及此時的幾何意義求解【詳解】(1)由曲線的參數(shù)方程為為參數(shù)),消去參數(shù),可得;由曲線的參數(shù)方程為為參數(shù)),消去參數(shù),可得,即(2)把為參數(shù))代入,得,解得:,即,滿足【點睛】本題考查參數(shù)方程化普通方程,特別是直線參數(shù)方程中參數(shù)的幾何意義的應用,是中檔題18(1);(2)證明見解析.【解析】(1)分、三種情況解不等式
15、,即可得出該不等式的解集;(2)利用分析法可知,要證,即證,只需證明即可,因式分解后,判斷差值符號即可,由此證明出所證不等式成立.【詳解】(1).當時,由,解得,此時;當時,不成立;當時,由,解得,此時.綜上所述,不等式的解集為;(2)要證,即證,因為,所以,.所以,.故所證不等式成立.【點睛】本題考查絕對值不等式的求解,同時也考查了利用分析法和作差法證明不等式,考查分類討論思想以及推理能力,屬于中等題.19(1);(2)【解析】(1)設,則由題設條件可得,化簡后可得軌跡的方程.(2)設直線,聯(lián)立直線方程和拋物線方程后利用韋達定理化簡并求得,結合焦半徑公式及弦長公式可求的值及的長.【詳解】(1
16、)設,則圓心的坐標為,因為以線段為直徑的圓與軸相切,所以,化簡得的方程為.(2)由題意,設直線,聯(lián)立得,設 (其中)所以,且,因為,所以,所以,故或 (舍),直線,因為的周長為所以.即,因為.又,所以,解得,所以.【點睛】本題考查曲線方程以及拋物線中的弦長計算,還涉及到向量的數(shù)量積.一般地,拋物線中的弦長問題,一般可通過聯(lián)立方程組并消元得到關于或的一元二次方程,再把已知等式化為關于兩個的交點橫坐標或縱坐標的關系式,該關系中含有或,最后利用韋達定理把關系式轉化為某一個變量的方程.本題屬于中檔題.20(1);(2)見解析【解析】(1)利用乘“1”法,結合基本不等式求得結果.(2)直接利用基本不等式
17、及乘“1”法,證明即可.【詳解】(1)因為 ,所以 因為 ,所以 (當且僅當 ,即 時等號成立),所以(2)證明:因為 ,所以 故 (當且僅當 時,等號成立)【點睛】本題考查了基本不等式的應用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.21(1)30;(2),比較劃算.【解析】(1)由頻率和為1求出,根據(jù)的值求出保費的平均值,然后解一元一次不等式 即可求出結果,最后取近似值即可;(2)分別計算參保與不參保時的期望,比較大小即可.【詳解】解:(1)由,解得.保險公司每年收取的保費為:要使公司不虧本,則,即解得.(2)若該老人購買了此項保險,則的取值為(元).若該老人沒有購買此項保險,則的取值為.(元).年齡為的該老人購買此項保險比較劃算.【點睛】本題考查學生利用相關統(tǒng)計圖表知識處理實際問題的能力,掌握頻率分布直方圖的基本性質,知道數(shù)學期望是平均數(shù)的另一種數(shù)學語言,為容易題.22(1);
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《繪畫復習》課件
- 紡織印染廠廢氣處理操作規(guī)程
- 《如何應對網絡欺凌》課件
- 2025年雞肉菇購銷合同
- 《登山游戲》(教學設計)-2024-2025學年人教版(2012)美術三年級上冊
- 《工業(yè)革命前夕》課件
- 2025年海東貨運從業(yè)資格證考些什么內容
- 2025年昆明資格證模擬考試
- 2023-2024學年河北省保定市六校聯(lián)盟高一下學期期中數(shù)學試題及答案
- 2025施工安全合同協(xié)議書 建筑施工安全生產協(xié)議書
- 高級財務管理完整版課件
- 怎樣學習初中物理
- DB62∕T 25-3111-2016 建筑基坑工程技術規(guī)程
- 大班音樂《水果百變秀》課件
- 婦幼保健院醫(yī)療保健服務轉介工作制度和流程
- 國家職業(yè)技能鑒定考評員考試題庫1100題【含答案】
- 監(jiān)察機關執(zhí)法工作規(guī)定學習測試
- 產品鑒定試驗大綱
- 2022職業(yè)病防治法宣傳周PPT
- 常州市武進區(qū)征地拆遷房屋裝修及附屬設施補償標準
- 民辦教師人員花名冊
評論
0/150
提交評論