小學奧數教程:分數應用題(三)全國通用(含答案)_第1頁
小學奧數教程:分數應用題(三)全國通用(含答案)_第2頁
小學奧數教程:分數應用題(三)全國通用(含答案)_第3頁
小學奧數教程:分數應用題(三)全國通用(含答案)_第4頁
小學奧數教程:分數應用題(三)全國通用(含答案)_第5頁
免費預覽已結束,剩余7頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、分數應用題(三)教學目標1 .分析題目確定單位 “1”2 .準確找到量所對應的率,利用量刊應率=單位 "1解題3 .抓住不變量,統一單位 “1”目小作 知識點撥一、知識點概述:分數應用題是研究數量之間份數關系的典型應用題,一方面它是在整數應用題上的延續和深化,另一方面,它有其自身的特點和解題規律.在解這類問題時,分析中數量之間的關系,準確找出量”與 率”之間的對應是解題的關鍵.關鍵:分數應用題經常要涉及到兩個或兩個以上的量,我們往往把其中的一個量看作是標準量.也稱為:單位“1;進行對比分析。在幾個量中,關鍵也是要找準單位“1和對應的百分率,以及對應量三者的關系例如:(1) a是b的幾

2、分之幾,就把數 b看作單位“1:(2)甲比乙多1,乙比甲少幾分之幾?8方法一:可設乙為單位 1”,則甲為1+1=9,因此乙比甲少-=-.8 88 8 9方法二:可設乙為 8份,則甲為9份,因此乙比甲少1+9=.9二、怎樣找準分數應用題中單位“1”(一)、部分數和總數在同一整體中,部分數和總數作比較關系時,部分數通常作為比較量,而總數則作為標準量,那么總數就是單位 “1:例如:我國人口約占世界人口的幾分之幾?世界人口是總數,我國人口是部分數,世界人口就是單位“1:解答題關鍵:只要找準總數和部分數,確定單位“1就很容易了。(二)、兩種數量比較分數應用題中,兩種數量相比的關鍵句非常多。有的是比”字句

3、,有的則沒有 比”字,而是帶有指向性特征的 齒“、是“、相當于"。在含有 比”字的關鍵句中,比后面的那個數量通常就作為標準 量,也就是單位 “1:例如:六(2)班男生比女生多一一就是以女生人數為標準(單位"1)',解題關鍵:在另外一種沒有比字的兩種量相比的時候,我們通常找到分率,看齒”誰的,相當于“誰的, 是"誰的幾分之幾。這個 齒”,相當于“,是"后面的數量一一誰就是單位f(三)、原數量與現數量有的關鍵句中不是很明顯地帶有一些指向性特征的詞語,也不是部分數和總數的關系。這類分數應用題的單位“1比較難找。需要將題目文字完善成我們熟悉的類似帶比”的

4、文字,然后在分析。例如:水結成冰后體積增加了,冰融化成水后,體積減少了。完善后:水結成冰后體積增加了 一 水結成冰后體積比原來增加了 ” 關來的水是單位 “1” 冰融化成水后,體積減少了 一 冰融化成水后,體積比原來減少了 ” 原來的冰是單位解題關鍵:要結合語文知識將題目簡化的文字豐富后在分析且皿隹例題精講單位1”變化【例1 養殖專業戶王老伯養了許多雞鴨,雞的只數是鴨的只數的11倍.鴨比雞少幾分之幾?4【考點】分數應用題【難度】1星【題型】解答111 1【解析】萬法一:把鴨看成單位 1 ,那么雞就是11,鴨比雞少:(11_1盧11=1 (此時的單位“1是雞的444 5只數).方法二:設鴨有4份

5、,則雞有5份,所以甲S比雞少1 + 5=.55【鞏固】 某校男生比女生多 3 ,女生比男生少幾分之幾?7【考點】分數應用題【難度】1星【題型】解答【解析】方法一:男生比女生多 -,則男生有1+3=10,女生比男生少-10=-.7777710方法二:設女生有 7份,則男生有10份,所以女生比男生少 3-10=-.1010【例2】一爐鐵水凝成鐵塊 ,其體積縮小了 ,那么這個鐵塊又熔化成鐵水(不計損耗),其中體積增34加了幾分之幾?【考點】分數應用題【難度】1星【題型】解答133【解析】萬法一:設鐵水的體積為1,則鐵塊為1 -豆.現在變回來,那么鐵塊的體積就要變為單位1,則鐵水的體積就為 什33 =

6、34,故體積增加了:("_1盧1=.34 333333方法二: 體積縮小是鐵塊比鐵水縮小,所以可以設鐵水為 34份,則鐵塊為33份,鐵塊又熔化成鐵水,體積增加是比鐵塊增加,所以用差的1份除以鐵塊的33份就是答案工.33331【鞏固】 水結成冰后體積增大它的 一.問:冰化成水后體積減少它的幾分之幾? 10【考點】分數應用題【難度】1星【題型】解答【解析】設水的體積是10份,則結成冰后體積為11份,冰化成水后比冰減少 1-11=1111【例3】 磁懸浮列車的能耗很低。它的每個座位的平均能耗是汽車的70%,而汽車每個座位的平均能耗是飛機的,則飛機每個座位的平均能耗是磁懸浮列車每個座位的平均

7、能耗的 倍。21【考點】分數應用題【難度】2星【題型】解答【關鍵詞】希望杯,六年級,二試【解析】磁懸浮列車每個座位的平均耗能是飛機每個座位的平均耗能的-1x102,故飛機每個座位的平均10 21 3能耗是磁懸浮列車每個座位的平均能耗的3倍。【答案】3倍【例4 在下降的電梯中稱重,顯示白重量比實際體重減少 1 ;在上升的電梯中稱重,顯示的重量比實7際體重增加1 .小明在下降的電梯中與小剛在上升的電梯中稱得的體重相同,小明和小剛實際6體重的比是.【考點】分數應用題【難度】2星【題型】解答【關鍵詞】2008年,清華附中【解析】小明在下降的電梯中稱得的體重為其實際體重的6,小剛在上升的電梯中稱得的體重

8、為其實際體7重的7 ,而小明在下降的電梯中與小剛在上升的電梯中稱得的體重相同,所以小明和小剛實際體6重的比是:1+6 :1券7)=49:36 .76【答案】49:36【例5】 學校閱覽室里有36名學生在看書,其中女生占f ,后來又有幾名女生來看書,這時女生人數占9所有看書人數的.問后來又有幾名女生來看書?19【考點】分數應用題【難度】2星【題型】解答【解析】把總人數視為“1;緊抓住男生人數不變進行解答.男生人數是36X(1-當=20人,后來閱覽室的9總人數是20+(1-2)=38(名),后來有38-36 =2 (名)女生進來.【答案】2名【鞏固】 工廠原有職工128人,男工人數占總數的 1 ,

9、后來又調入男職工若干人,調入后男工人數占總4人數的2 ,這時工廠共有職工 人.5【考點】分數應用題【難度】2星【題型】解答【關鍵詞】2009年,五中,入學測試【解析】在調入的前后,女職工人數保持不變.在調入前,女職工人數為128M(1-)=96人,調入后女職42 33工占總人數的1 -g =3 ,所以現在工廠共有職工 96=160人.【答案】160人【鞏固】 學校派出60名選手參加2008年華羅庚金杯小學數學邀請賽 ”,其中女選手占1 .正式比賽時4有幾名女選手因故缺席,這樣就使女選手人數變為參賽選手總數的-.正式參賽的女選手有多11少名?【考點】分數應用題【難度】2星【題型】解答【解析】因為

10、女選手人數有變化, 男選手人數未變,所以抓住男選手人數不變求解.把總人數視為“1;男選手人數是60X(1-° )=45(人),男選手人數占正式參賽選手總數的1-2,所以正式參賽選手總數411是:451-2)=55(人),正式參賽的女選手人數是55x2=10(人)。1111【答案】10人這樣參加新產品開發的2個人占總人數的_ 1,40 X =8 人.5【鞏固】 某公司有1的職員參加新產品的開發工作,后來又有2名職工主動參加,5職工人數是其余人數的 1,原來有多少職工參加開發工作? 3【考點】分數應用題【難度】2星【題型】解答【解析】后來參加新產品開發的職工人數是總人數的,所以新加入的1

11、 3 4111 1, 一,一-=一,那么職工總人數為 2:一=40人,原來參加開發的職工數是 4 5 2020【答案】8人【例6】 春天幼兒園中班小朋友的平均身高是115厘米,其中男孩比女孩多 ,女孩的平均身高比男孩5高10%這個班男孩的平均身高是 厘米。【考點】分數應用題【難度】3星【題型】解答【關鍵詞】希望杯,六年級,一試【解析】 設男生有6人,女生有5人,則男生的平均身高為:115M(5+6)胃(1+10%)m5+6x1 = 110 (厘米)【答案】110厘米【例7】 有甲、乙兩桶油,甲桶油的質量是乙桶的勺倍,從甲桶中倒出 5千克油給乙桶后,甲桶油的質2量是乙桶的f倍,乙桶中原有油千克.

12、3【考點】分數應用題【難度】2星【題型】解答【解析】原來甲桶油的質量是兩桶油總質量的工 =5,甲桶中倒出5千克后剩下的油的質量是兩桶油總5 2 7質量的=4,由于總質量不變,所以兩桶油的總質量為5<,_4)=35千克,乙桶中原有油4 3 77 72 一35 X- =10 千克.7【答案】10千克【例8】(1)某工廠二月份比元月份增產10%,三月份比二月份減產10%.問三月份比元月份增產了還是減產了? ( 2) 一件商品先漲價15%,然后再降價15%,問現在的價格和原價格比較升高、 降低還是不變?【考點】分數應用題【難度】2星【題型】解答【解析】(1)設二月份產量是1,所以元月份產量為:1

13、+(1+10%)=10 ,三月份產量為:110%=0.9,11因為>0.9,所以三月份比元月份減產了 11(2)設商品的原價是1,漲價后為1+15%=115,降價15%為:1.15x(115% )=0.9775 ,現價和原 價比較為:0.9775V1,所以價格比較后是價降低了。【答案】(1)減產(2)降低【鞏固】 某工廠二月份比元月份增產 ,三月份比二月份減產 -問三月份比元月份增產了還是減產了?1010【考點】分數應用題【難度】2星【題型】解答【解析】工廠二月份比元月份增產 工,將元月份產量看作 1,則二月份產量為:1M(1+)=!,三月比101010111199一月減廣一,則二月份廣

14、重為:一父(1 一)= <1 ,所以二月份比兀月份減廣了.101010 100【答案】減產【鞏固】 一件商品先漲價1,然后再降價1,問現在的價格和原價格比較升高、降低還是不變? 55【考點】分數應用題【難度】2星【題型】解答11【解析】1父(1 +1) M(1 _1) =0.96 <1 ,所以現在的價格比原價降低了.55【答案】降低11【例9】 某校二年級有學生 240人,比四年級多一,比五年級少一.四年級、五年級各多少人?45【考點】分數應用題【難度】2星【題型】解答【解析】比四年級,可以設四年級為 4份,(一般情況下可設 比“、是”、等詞后面的實際量的份數為分數的分母),則三年

15、級為5份恰有240人,所以一每份就是240得5 =48,所以四年級就有48x4 = 192人, 同理可設五年級有 5份,則三年級有4份恰是240人,所以五年級就有300人.【答案】300人【鞏固】 把100個人分成四隊,一隊人數是二隊人數的11倍,一隊人數是三隊人數的 11倍,那么四隊有34多少個人?【考點】分數應用題【難度】2星【題型】解答【解析】方法一:設一隊的人數是 1",那么二隊人數是:1+11=3 ,三隊的人數是:1 + 1=f ,3 44 534 51 一一一 51 一 ,,一,一一 、一1 +3 +- =51 ,因此,一、二、三隊之和是:一隊人數X5 ,因為人數是整數,

16、一隊人數一定是4 5 202020的整數倍,而三個隊的人數之和是51父(某一整數),因為這是100以內的數,這個整數只能是1 .所以三個隊共有51人,其中一、二、三隊各有 20, 15, 16人.而四隊有:10051=49(人). 方法二:設二隊有 3份,則一隊有4份;設三隊有4份,則一隊有5份.為統一一隊所以設一隊有 4,5 =20份,則二隊有15份,三隊有16份,所以三個隊之和為 15+16+20 = 51份,而四個隊的 份數之和必須是100的因數,因此四個隊份數之和是100份,恰是一份一人,所以四隊有100-51=49 (人).【答案】49人【例10】新光小學有音樂、美術和體育三個特長班

17、,音樂班人數相當于另外兩個班人數的-,美術班人5數相當于另外兩個班人數的 ,體育班有7【考點】分數應用題【難度】2星【解析】條件可以化為:音樂班的人數是所有班人數的2 =3 ,所以體育班的人數是所有班人數的7 3 102人,其中首樂班有140M2 =40人,美術班有7【答案】42人58人,音樂班和美術班各有多少人?【題型】解答二=2 ,美術班的學生人數是所有班人數的5 2 72329 一 一. .,291-1 瑞 =29,所以所有班的人數為 58囁 =1403.140父一 =42 人.10【鞏固】 王先生、李先生、趙先生、楊先生四個人比年齡,王先生的年齡是另外三人年齡和的1 ,李先211生的年

18、齡是另外二人年齡和的 1 ,趙先生的年齡是其他三人年齡和的,楊先生26歲,你知34道王先生多少歲嗎?【考點】分數應用題【難度】2星【題型】解答【解析】方法一:要求王先生的年齡,必須先要求出其他三人的年齡各是多少.而題目中出現了三個另外三人”所包含的對象并不同,即三個單位1”是不同的,這就是所說的單位1”不統一,因此,解答此題的關鍵便是抓不變量,統一單位1”.題中四個人的年齡總和是不變的,如果以四個人的年齡總和為單位 1”,則單位1”就統一了.那么王先生的年齡就是四人年齡和的=1,李1 2 3先生的年齡就是四人年齡和的=1 ,趙先生的年齡就是四人年齡和的 '=)(這此過程就是13 414

19、 5所謂的轉化單位 1 ” .)則楊先生的年齡就是四人年齡和的1 _1_1 =,由此便可求出四人3 4 5 60111 1的年齡和:26得1 不五而e J=120(歲),王先生的年齡為:120、=40(歲).方法二:設王先生年齡是1份,則其他三人年齡和為 2份,則四人年齡和為 3份,同理設李先生年齡為1份,則四人年齡和為4份,設趙先生年齡為1份,則四人年齡和為5份,不管怎樣四人年齡和應是 相同的,但是現在四人年齡和分別是3份、4份、5份,它們的最小公倍數是 60份,所以最后可以設四人年齡和為 60份,則王先生的年齡就變為 20份,李先生的年齡就變為15份,趙先生的年齡就變為12份,則楊先生的年

20、齡為 13份,恰好是26歲,所以1份是2歲,王先生年齡是 20份 所以就是40歲.【答案】40歲【鞏固】 四只小猴吃桃,第一只小猴吃的是另外三只的總數的-,第二只小猴吃的是另外三只吃的總數的1,第三只小猴吃的是另外三只的總數的4共吃了多少個桃?【考點】分數應用題【難度】2星【解析】根據題意知前三只小猴分別吃了總數的1 ,4(個)【答案】120個31 ,第四只小猴將剩下的 46個桃全吃了 .問四只小猴 5【題型】解答1.1, 所以四只小猴共吃了 46個(1111)=120564 5 6【鞏固】 兄弟四人去買電視,老大帶的錢是另外三人的一半,老二帶的錢是另外三人的1/3,老三帶的錢是另外三人總錢數

21、的1/4,老四帶91元,兄弟四人一共帶了多少錢?【考點】分數應用題【難度】2星【題型】解答【解析】老大帶的錢是另外三人的一半,也就說老大帶的錢是一共帶錢的1/3,同理老二帶的錢是一共帶錢的1/4,老三帶的錢是一共帶錢的1/5,所以老四帶的錢是一共帶錢的:1-1/3-1/4-1/5=13/60四人一共帶的錢:91除以13/60=420 (元)【答案】420元【例11小剛給王奶奶運蜂窩煤,第一次運了全部的3,第二次運了 50塊,這時已運來的恰好是沒運來8的5.問還有多少塊蜂窩煤沒有運來? 7【考點】分數應用題【難度】3星【題型】解答【關鍵詞】迎春杯, 決賽【解析】方法一:運完第一次后,還剩下 5沒

22、運,再運來50塊后,已運來的恰好是沒運來的-,也就是說87沒運來的占全部的,所以,第二次運來的50塊占全部的:全部蜂窩煤有:128 12 24.17,50 =一 =1200(塊),沒運來的有:1200M=700(塊).2412方法二:根據題意可以設全部為 8份,因為已運來的恰好是沒運來的-,所以可以設全部為12份,7為了統一全部的蜂窩煤,所以設全部的蜂窩煤共有 8,12 =24份,則已運來應是24次-5-=10份,7 5沒運來的24父工 =14份,第一次運來9份,所以第二次運來是10-9=1份恰女?是50塊,因此7 5沒運來的蜂窩煤有 50x14=700 (塊)【答案】700塊 【鞏固】 五(

23、一)班原計劃抽1的人參加大掃除,臨時又有 2個同學主動參加,實際參加掃除的人數是其余5人數的1.原計劃抽多少個同學參加大掃除?3【考點】分數應用題【難度】3星【題型】解答【解析】又有2個同學參加掃除后,實際參加掃除的人數與其余人數的比是1:3,實際參加人數比原計劃多工-1=工.即全班共有2子工=40(人).原計劃抽40x1 =8(人)參加大掃除. 1 3 5 20205【答案】8人【鞏固】 某校學生參加大掃除的人數是未參加大掃除人數的1,后來又有20名同學參加大掃除,實際參4加的人數是未參加人數的 1 ,這個學校有多少人?3【考點】分數應用題【難度】2星【題型】解答11,【解析】20 T.而J

24、=400 (人).【答案】400人【例12小莉和小剛分別有一些玻璃球,如果小莉給小剛24個,則小莉的玻璃球比小剛少 -;如果小剛7給小莉24個,則小剛的玻璃球比小莉少5 ,小莉和小剛原來共有玻璃球多少個?8【考點】分數應用題【難度】3星【題型】解答【解析】小莉給小剛24個時,小莉是小剛的4 (二1 一'),即兩人球數和的 f ;小剛給小莉24個時,小 7711莉是兩人球數和的 (=一8一),因此24+24是兩人球數和的 -=,從而,和是(24+24)118 8-511 11 114人+=132(個).11【答案】132個【例13】某班一次集會,請假人數是出席人數的1 ,中途又有一人請假

25、離開,這樣一來,請假人數是出9席人數的,那么,這個班共有多少人? 22【考點】分數應用題【難度】3星【題型】解答【解析】因為總人數未變,以總人數作為 " 1:原來請假人數占總人數的現在請假人數占總人數的1 93,這個班共有:l1 3 -L )=50(人)3 223 22 1 9【答案】50人【鞏固】 小明是從昨天開始看這本書的,昨天讀完以后,小明已經讀完的頁數是還沒讀的頁數-,他今9天比昨天多讀了 14頁,這時已經讀完的頁數是還沒讀的頁數的問題是,這本書共有多少頁?3【考點】分數應用題【難度】3星【題型】解答1【解析】首先,可以直接運算得出,第一天小明讀了全書的一工=工,而前二天小明

26、一共讀了全書的1101 -91工=1 ,所以第二天比第一天多讀的14頁對應全書的 1m2 =。所以整本書一共有.144 10201 . 一3114。一=280 (頁)。此外,如果對分數的掌握還不是很熟練的話,那么這道題可以采用設份數的20方法:把這本書看作 20份,那么昨天他看了 2份,而今天他看了 2份還多14頁,兩天一共看了 4 份還多14頁,或者可以表示成 20 + (1+3) = 5 (份)。那么每份是14+(5-4)=14 (頁),這本書共 14M20=280 (頁)。兩種方法都可以得到相同的結果。【答案】280頁【例14】某校四年級原有兩個班,現在要重新編為三個班,將原一班的1與原

27、二班的1組成新一班,將34原一班的二與原二班的1組成新二班,余下的30人組成新三班.如果新一班的人數比新二班的43人數多工,那么原一班有多少人?10【考點】分數應用題【難度】3星【題型】解答1 1 55【斛析】新二班人數占原來兩班人數之和的1 一一 _一=一,所以,原來兩班總人數為:30 4=72(人),3 4 12121新一班與新二班人數之和為:72-30=42(人),新二班人數是:42+(1+,+1)=20 (人),新一班10人數為:42-20 =22(人),新一班與新二班人數之差為 22-20 = 2,而新一班與新二班人數之差為(原一班人數原二班人數)x(1 _1),故:原一班人數 原二

28、班人數=2。(11) =24(人),原3 43 4一班人數 =(72 +24)+ 2 =48(人).1和二車間人數的分到一23【答案】48人 【鞏固】 某工廠對一、二兩個車間的職工進行重組,將原來的一車間人數的車間,將原來的一車間人數的1和二車間人數的1分到二車間,兩個車間剩余的140人組成勞32動服務公司,現在二車間人數比一車間人數多-1 ,現在一車間有人,二車間有17人.【考點】分數應用題【難度】3星【題型】解答【解析】由將一車間人數的 1和二車間人數的1分到一車間,將一車間人數的1和二車間人數的 二分到2332二車間”可知,現在一、二兩車間的人數之和為總人數的-+1=5,所以勞動服務公司

29、的 140人2 3 65 1 1占總人數的1-5=1 ,那么總人數為:140= 1=840人,現在一、二兩車間的人數之和為5 1840父一=700人.由于現在二車間人數比一車間人數多一,所以現在一車間人數為6 171 70仃(1力一弓 3乂0現在二車間人數為 700340 = 360人.提不:可以繼續求出原來一車間 17和二車間的人數.由于現在二車間比一車間多20人,所以原來二車間人數的 1 -1 =1比一車間2 3 6人數的1多20人,那么原來二車間人數比乙車間人數多20 + 1=120人,原來一車間有66(840 120)。2= 360,原來二車間有 360+120 = 480人.【答案】480人【例15】林林倒滿一杯純牛奶,第一次喝了1,然后加入豆漿,將杯子斟滿并攪拌均勻,第二次林林又3喝了 1,繼續用豆漿將杯子斟滿并攪拌均勻,重復上述過程,那么第四次后,林林共喝了一杯3純牛奶總量的 (用分數表示)。【考點】分數應用題說度】3星【題型】解答【關鍵詞】華杯賽, 決賽【解析】 大家要先分析清楚的是不論是否加入豆漿,每次喝到的都是杯子里剩下牛奶的-,要是能想清楚3這一點那么這道題就變了一道找規律的問題了。喝掉的牛奶剩下的牛奶A次131 1213 3第二次2 1 2X =一3 3 9(喝掉剩下4的1)932 2 4X-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論