高中數學排列組合知識點_第1頁
高中數學排列組合知識點_第2頁
高中數學排列組合知識點_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、排列組合復習鞏固1.分類計數原理(加法原理)完成一件事,有類辦法,在第1類辦法中有種不同的方法,在第2類辦法中有種不同的方法,在第類辦法中有種不同的方法,那么完成這件事共有:種不同的方法2.分步計數原理(乘法原理)完成一件事,需要分成個步驟,做第1步有種不同的方法,做第2步有種不同的方法,做第步有種不同的方法,那么完成這件事共有:種不同的方法3.分類計數原理分步計數原理區別 分類計數原理方法相互獨立,任何一種方法都可以獨立地完成這件事。分步計數原理各步相互依存,每步中的方法完成事件的一個階段,不能完成整個事件一.特殊元素和特殊位置優先策略例1.由0,1,2,3,4,5可以組成多少個沒有重復數字

2、五位奇數.解:由于末位和首位有特殊要求,應該優先安排,以免不合要求的元素占了這兩個位置. 先排末位共有 然后排首位共有 最后排其它位置共有 由分步計數原理得練習題:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆里,問有多少不同的種法?二.相鄰元素捆綁策略例2. 7人站成一排 ,其中甲乙相鄰且丙丁相鄰, 共有多少種不同的排法.解:可先將甲乙兩元素捆綁成整體并看成一個復合元素,同時丙丁也看成一個復合元素,再與其它元素進行排列,同時對相鄰元素內部進行自排。由分步計數原理可得共有種不同的排法三.不相鄰問題插空策略例3.一個晚會的節目有4個舞蹈,2個相聲,3個獨唱,舞蹈節目不

3、能連續出場,則節目的出場順序有多少種?解:分兩步進行第一步排2個相聲和3個獨唱共有種,第二步將4舞蹈插入第一步排好的6個元素中間包含首尾兩個空位共有種不同的方法,由分步計數原理,節目的不同順序共有 種四.定序問題倍縮空位插入策略例4. 7人排隊,其中甲乙丙3人順序一定共有多少不同的排法解:(倍縮法)對于某幾個元素順序一定的排列問題,可先把這幾個元素與其他元素一起進行排列,然后用總排列數除以這幾個元素之間的全排列數,則共有不同排法種數是: (空位法)設想有7把椅子讓除甲乙丙以外的四人就坐共有種方法,其余的三個位置甲乙丙共有 1種坐法,則共有種方法。五.重排問題求冪策略例5.把6名實習生分配到7個

4、車間實習,共有多少種不同的分法解:完成此事共分六步:把第一名實習生分配到車間有 7 種分法.把第二名實習生分配到車間也有7種分依此類推,由分步計數原理共有種不同的排法六.環排問題線排策略例6. 8人圍桌而坐,共有多少種坐法?解:圍桌而坐與坐成一排的不同點在于,坐成圓形沒有首尾之分,所以固定一人并從此位置把圓形展成直線其余7人共有(8-1)!種排法即! 七.多排問題直排策略例7.8人排成前后兩排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后兩排,相當于8人坐8把椅子,可以把椅子排成一排.個特殊元素有種,再排后4個位置上的特殊元素丙有種,其余的5人在5個位置上任意排列有種,則共有

5、種八.排列組合混合問題先選后排策略例8.有5個不同的小球,裝入4個不同的盒內,每盒至少裝一個球,共有多少不同的裝法.解:第一步從5個球中選出2個組成復合元共有種方法.再把4個元素(包含一個復合元素)裝入4個不同的盒內有種方法,根據分步計數原理裝球的方法共有九.小集團問題先整體后局部策略例9.用1,2,3,4,5組成沒有重復數字的五位數其中恰有兩個偶數夾1,在兩個奇數之間,這樣的五位數有多少個?解:把,當作一個小集團與排隊共有種排法,再排小集團內部共有種排法,由分步計數原理共有種排法 .十.元素相同問題隔板策略例10.有10個運動員名額,分給7個班,每班至少一個,有多少種分配方案? 解:因為10

6、個名額沒有差別,把它們排成一排。相鄰名額之間形成個空隙。在個空檔中選個位置插個隔板,可把名額分成份,對應地分給個班級,每一種插板方法對應一種分法共有種分法。十一.正難則反總體淘汰策略例11.從0,1,2,3,4,5,6,7,8,9這十個數字中取出三個數,使其和為不小于10的偶數,不同的 取法有多少種?解:這問題中如果直接求不小于10的偶數很困難,可用總體淘汰法。這十個數字中有5個偶數5個奇數,所取的三個數含有3個偶數的取法有,只含有1個偶數的取法有,和為偶數的取法共有。再淘汰和小于10的偶數共9種,符合條件的取法共有十二.平均分組問題除法策略例12. 6本不同的書平均分成3堆,每堆2本共有多少

7、分法? 解: 分三步取書得種方法,但這里出現重復計數的現象,不妨記6本書為ABCDEF,若第一步取AB,第二步取CD,第三步取EF該分法記為(AB,CD,EF),則中還有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有種取法 ,而這些分法僅是(AB,CD,EF)一種分法,故共有種分法。十三. 合理分類與分步策略例13.在一次演唱會上共10名演員,其中8人能能唱歌,5人會跳舞,現要演出一個2人唱歌2人伴舞的節目,有多少選派方法解:10演員中有5人只會唱歌,2人只會跳舞3人為全能演員。選上唱歌人員為標準進行研究只會唱的5人中沒有人選上唱

8、歌人員共有種,只會唱的5人中只有1人選上唱歌人員種,只會唱的5人中只有2人選上唱歌人員有種,由分類計數原理共有 種。十四.構造模型策略例14. 馬路上有編號為1,2,3,4,5,6,7,8,9的九只路燈,現要關掉其中的3盞,但不能關掉相鄰的2盞或3盞,也不能關掉兩端的2盞,求滿足條件的關燈方法有多少種?解:把此問題當作一個排隊模型在6盞亮燈的5個空隙中插入3個不亮的燈有 種十五.實際操作窮舉策略例15.設有編號1,2,3,4,5的五個球和編號1,2,3,4,5的五個盒子,現將5個球投入這五個盒子內,要求每個盒子放一個球,并且恰好有兩個球的編號與盒子的編號相同,有多少投法解:從5個球中取出2個與

9、盒子對號有種還剩下3球3盒序號不能對應,利用實際操作法,如果剩下3,4,5號球, 3,4,5號盒3號球裝4號盒時,則4,5號球有只有1種裝法,同理3號球裝5號盒時,4,5號球有也只有1種裝法,由分步計數原理有種 十六. 分解與合成策略例16. 30030能被多少個不同的偶數整除分析:先把30030分解成質因數的乘積形式30030=2×3×5 × 7 ×11×13,依題意可知偶因數必先取2,再從其余5個因數中任取若干個組成乘積,所有的偶因數為:練習:正方體的8個頂點可連成多少對異面直線解:我們先從8個頂點中任取4個頂點構成四體共有體共,每個四面體

10、有3對異面直線,正方體中的8個頂點可連成對異面直線十七.化歸策略例17. 25人排成5×5方陣,現從中選3人,要求3人不在同一行也不在同一列,不同的選法有多少種?解:將這個問題退化成9人排成3×3方陣,現從中選3人,要求3人不在同一行也不在同一列,有多少選法.這樣每行必有1人從其中的一行中選取1人后,把這人所在的行列都劃掉,如此繼續下去.從3×3方隊中選3人的方法有種。再從5×5方陣選出3×3方陣便可解決問題.從5×5方隊中選取3行3列有選法所以從5×5方陣選不在同一行也不在同一列的3人有選法。十八.數字排序問題查字典策略例18由0,1,2,3,4,5六個數字可以組成多少個沒有重復的比324105大的數?解:十九.樹圖策略例19人相互傳球,由甲開始發球,并作為第一次傳球,經過次傳求后,球仍回到甲的手中,則不同的傳球方式有_ 二十.復雜分類問題表格策略例20有紅、黃、蘭色的球各5只,分別標有A、B、C、D、E五個字母,現從中取5只,要求各字母均有且三色齊備,則共有多少種不同的取法紅111223黃123121蘭321211取法 解:二十一:住店法策略解決“允許重復排列問題”要注意區分兩類元素

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論