2020高考理數總復習課后限時集訓3全稱量詞與存在量詞_第1頁
2020高考理數總復習課后限時集訓3全稱量詞與存在量詞_第2頁
免費預覽已結束,剩余1頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、1 課后限時集訓 ( 三) (建議用時: 40 分鐘) A A 組 基礎達標 一、選擇題 1. (2019 武漢模擬)已知命題 p:實數的平方是非負數,則下列結論正確的 是 ( ) A 命題非 p 是真命題 B. 命題 p 是特稱命題 C .命題 p 是全稱命題 D.命題 p 既不是全稱命題也不是特稱命題 C C 該命題是全稱命題且是真命題.故選 C. 2. 已知 p: ? xo R,R,3xoV x3,那么非 p 為( ) A. ?x R,R,3xVx3 B . ? xo R,R,3xox3 x 3 3 C. ? x R,R,3 x D . ? xo R,R,3xoxo C C 因為特稱命題

2、的否定為全稱命題,所以非 p: ? x R,R,3xx3,故選 C. 2 3. (2O19 衡水模擬)設命題 p: “ ? x V 1, xv 1”,貝U非 p 為( ) 22 A. ? x 1,xv 1 B . ? xov 1,xo 1 22 C. ? x v 1,x 1 D . ? xo 1,xo 1 2 B B 因為全稱命題的否定是特稱命題, 所以非 p 為? X2V 1,xo 1,故選 B. 4 .命題“ ? n N N*,f(n) N N*且 f(n)n B . ? n N N,f(n)?N N 或 f(n)n * C . ? no N N , f(no)?N N 且 f(no) n

3、o * D . ? no N N, f(no)?N N 或 f(no) no D D 命題 “? n N N*,f(n) N N*且 f(n) no”,故選 D. 5 給出下列命題:3 ? a R R, sin a+ COS a 1 ; 1 1 由 sin acos a= 2sin 2a4. a 若 q 是真命題,則一 4= 3,即 a 12. sin a+ cos a=2; a R R, sin acos a |; sin cocos T 其中正確命題的序號是() A C B D 由 sin a+ cos a= 2sin a+ 4 2 知是假命題, 4 由于 p 和 q 都是真命題知. 因此

4、 a 的取值范圍是12, 4 U 4 ,+x). 二、填空題 8. _ 若“? x 0, n, tan x0”的否定為假命題,貝 U 實數 a 的取 值范圍是 . 5,+ 由“?x R R, x2 5x+ 15a0”的否定為假命題,可知原命題 必為真命題,即不等式 x2 5x+字 a 0 對任意實數 x 恒成立. 2 15 設 f(x) x 5x+ qa, 故 25 4X 貴6,即實數 a 的取值范圍為 6,+ . 10. 已知命題 p: ? x 0,1, aex,命題 q: ? x R R, x2 + 4x0 + a 0,若 命題“ p 和 q”都是真命題,則實數 a 的取值范圍是 _ .

5、e,4由題意知 p 與 q 均為真命題,由 p 為真,可知 ae,由 q 為真,知 2 x + 4x+ a 0 有解,則 16 4a0, a4,綜上知 e a4. B B 組能力提升 則其圖象恒在 x 軸的上方, 5 1. 若定義域為 R R 的函數 f(x)不是偶函數,貝 U 下列命題中一定為真命題的是 () A. ? x R R, f( x)豐f(x) B. ? x R R, f( x) = f(x) C. ? xo R R, f( xo)豐 f(xo) D. ? xo R R, f( xo)= f(xo) C C 由題意知? x R R, f( x)= f(x)是假命題,則其否定為真命題

6、,? xo R R, f( xo)工 f (xo)是真命題. 2. 下列命題中,真命題是() A. ? xo R R, exox2 a C. a+ b= 0 的充要條件是 b= 1 D. “a 1, b 1”是“ ab 1”的充分條件 D D 因為 y= ex0, x R R 恒成立,所以 A 不正確; 因為當 x= 5 時,2 5 1, b 1 時,顯然 ab 1, D 正確. 11 2 x x+1 3.已知 p: ? x 占,2 , 2xm(x + 1), q:函數 f(x) = 4 + 2 + m 1 存在 零點,若 p 和 q 都為真命題,則實數 m 的取值范圍是 _ . 血;1 11

7、 2 , 2x 人 2x 5 4 5 4 j 已知 p: ? x 匕,2,2x.令 g(x)= , 5 2- x + 1 x + 1 則 g(x)在 4, 1遞增,所以 g(x)5; q:函數 f(x) = 4x+ 2x+1 + m 1 = (2x+ 1)2+ m 2, 令 f(x)= 0,得 2x= ;2 m 1. 若 f(x)存在零點,貝 r 2 m1 0,解得 m2x+ 1; 2 ? xo R R, xo+ Xo= 1; 其中真命題為 _ .(填序號) 對于,當 xo=滬寸,sin xo+ cos xo= , 2,所以此命題為真命題;對 于,當 x (3,+x)時,x 2x 1 = (x 1)2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論