外文翻譯基于注塑模具鋼研磨和拋光工序的自動化表面處理_第1頁
外文翻譯基于注塑模具鋼研磨和拋光工序的自動化表面處理_第2頁
外文翻譯基于注塑模具鋼研磨和拋光工序的自動化表面處理_第3頁
外文翻譯基于注塑模具鋼研磨和拋光工序的自動化表面處理_第4頁
外文翻譯基于注塑模具鋼研磨和拋光工序的自動化表面處理_第5頁
已閱讀5頁,還剩7頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、畢業設計(論文)外文資料翻譯系部: 機械工程系 專 業: 機械工程及自動化 姓 名: 學 號: 外文出處:automated surface finishing of plastic injection mold steel with spherical grinding ang ball burnishing processess 附 件: 1.外文資料譯文;2.外文原文。 指導教師評語:譯文基本能表達原文思想,語句較流暢,條理較清晰,專業用語翻譯基本準確,基本符合中文習慣,整體翻譯質量一般。 簽名: 2009 年 3 月 19 日附件1:外文資料翻譯譯文基于注塑模具鋼研磨和拋光工序的自動化

2、表面處理摘要 本文研究了注塑模具鋼自動研磨與球面拋光加工工序的可能性,這種注塑模具鋼pds5的塑性曲面是在數控加工中心完成的。這項研究已經完成了磨削刀架的設計與制造。 最佳表面研磨參數是在鋼鐵pds5 的加工中心測定的。對于pds5注塑模具鋼的最佳球面研磨參數是以下一系列的組合:研磨材料的磨料為粉紅氧化鋁,進給量500毫米/分鐘,磨削深度20微米,磨削轉速為18000rpm。用優化的參數進行表面研磨,表面粗糙度ra值可由大約1.60微米改善至0.35微米。 用球拋光工藝和參數優化拋光,可以進一步改善表面粗糙度ra值從0.343微米至0.06微米左右。在模具內部曲面的測試部分,用最佳參數的表面研

3、磨、拋光,曲面表面粗糙度就可以提高約2.15微米到0.007微米。關鍵詞 自動化表面處理 拋光 磨削加工 表面粗糙度 田口方法 一、引言 塑膠工程材料由于其重要特點,如耐化學腐蝕性、低密度、易于制造,并已日漸取代金屬部件在工業中廣泛應用。 注塑成型對于塑料制品是一個重要工藝。注塑模具的表面質量是設計的本質要求,因為它直接影響了塑膠產品的外觀和性能。 加工工藝如球面研磨、拋光常用于改善表面光潔度。研磨工具(輪子)的安裝已廣泛用于傳統模具的制造產業。自動化表面研磨加工工具的幾何模型將在下面介紹。自動化表面處理的球磨研磨工具將從中得到示范和開發。 磨削速度, 磨削深度,進給速率和砂輪尺寸、研磨材料特

4、性(如磨料粒度大小)是球形研磨工藝中主要的參數。注塑模具鋼的球面研磨最優化參數目前尚未在文獻得到確切的依據。 近年來 ,已經進行了一些研究,確定了球面拋光工藝的最優參數。 比如,人們發現, 用碳化鎢球滾壓的方法可以使工件表面的塑性變形減少,從而改善表面粗糙度、表面硬度、抗疲勞強度。 拋光的工藝的過程是由加工中心 3,4和車床5,6共同完成的。對表面粗糙度有重大影響的拋光工藝主要參數,主要是球或滾子材料,拋光力, 進給速率,拋光速度,潤滑、拋光率及其他因素等。注塑模具鋼pds5的表面拋光的參數優化,分別結合了油脂潤滑劑,碳化鎢球,拋光速度200毫米/分鐘,拋光力300牛, 40微米的進給量。采用

5、最佳參數進行表面研磨和球面拋光的深度為2.5微米。通過拋光工藝,表面粗糙度可以改善大致為40%至90%。 此項目研究的目的是,發展注塑模具鋼的球形研磨和球面拋光工序,這種注塑模具鋼的曲面實在加工中心完成的。表面光潔度的球研磨與球拋光的自動化流程工序。 我們開始自行設計和制造的球面研磨工具及加工中心的對刀裝置。利用田口正交法,確定了表面球研磨最佳參數。選擇為田口l18型矩陣實驗相應的四個因素和三個層次。 用最佳參數進行表面球研磨則適用于一個曲面表面光潔度要求較高的注塑模具。 為了改善表面粗糙, 利用最佳球面拋光工藝參數,再進行對表層打磨。二、球研磨的設計和對準裝置實施過程中可能出現的曲面的球研磨

6、,研磨球的中心應和加工中心的z軸相一致。 球面研磨工具的安裝及調整裝置的設計。電動磨床展開了兩個具有可調支撐螺絲的刀架。磨床中心正好與具有輔助作用的圓錐槽線配合。 擁有磨床的球接軌,當兩個可調支撐螺絲被收緊時,其后的對準部件就可以拆除。研磨球中心坐標偏差約為5微米, 這是衡量一個數控坐標測量機性能的重要標準。 機床的機械振動力是被螺旋彈簧所吸收。球形研磨球和拋光工具的安裝。為使球面磨削加工和拋光加工的進行,主軸通過球鎖機制而被鎖定。 三、矩陣實驗的規劃3.1田口正交表:利用矩陣實驗田口正交法,可以確定參數的有影響程度. 為了配合上述球面研磨參數,該材料磨料的研磨球(直徑10毫米),進給速率,研

7、磨深度,在次研究中電氣磨床被假定為四個因素(參數),指定為從a到d。三個層次(程度)的因素涵蓋了不同的范圍特征,并用了數字1、2、3標明。挑選三類磨料,即碳化硅(sic),白色氧化鋁(al2o3,wa),粉紅氧化鋁(al2o3, pa)來研究. 這三個數值的大小取決于每個因素實驗結果。選定l18型正交矩陣進行實驗,進而研究四三級因素的球形研磨過程。3.2數據分析的界定: 工程設計問題,可以分為較小而好的類型,象征性最好類型,大而好類型,目標取向類型等。 信噪比(s/n)的比值,常作為目標函數來優化產品或者工藝設計。 被加工面的表面粗糙度值經過適當地組合磨削參數,應小于原來的未加工表面。 因此,

8、球面研磨過程屬于工程問題中的小而好類型。從每個l18型正交實驗得到的信噪比(s/n)數據,經計算后,運用差異分析技術(變異)和殲比檢驗來測定每一個主要的因素。 優化小而好類型的工程問題問題更是盡量使最大而定。各級選擇的最大化將對最終的因素有重大影響。 最優條件可視研磨球而待定。 四、實驗工作和結果: 這項研究使用的材料是pds5工具鋼(相當于艾西塑膠模具), 它常用于大型注塑模具產品在國內汽車零件領域和國內設備。 該材料的硬度約hrc33(hs46)。 具體好處之一是, 由于其特殊的熱處理前處理,模具可直接用于未經進一步加工工序而對這一材料進行加工。式樣的設計和制造,應使它們可以安裝在底盤,來

9、測量相應的反力。 pds5試樣的加工完畢后,裝在大底盤上在三坐標加工中心進行了銑削,這種加工中心是由楊*鋼鐵公司所生產(中壓型三號),配備了fanuc-18m公司的數控控制器(0.99型)。用hommelwerket4000設備來測量前機加工前表面的粗糙度,使其可達到1.6微米。 一個由renishaw公司生產的視頻觸摸觸發探頭,安裝在加工中心上,來測量和確定和原始式樣的協調。 數控代碼所需要的磨球路徑由powermill軟件產。這些代碼經過rs232串口界面,可以傳送到裝有控制器的數控加工中心上。球面研磨工藝的目標,就是通過確定每一種因子的最佳優化程度值,來使試樣光滑表層的表面粗糙度值達到最

10、小。因為 log是一個減函數,我們應當使信噪比(s/n)達到最大。因此,我們能夠確定每一種因子的最優程度使得的值達到最大。因此基于這個點陣式實驗的最優轉速應該是18000rpm通過使用數據方差分析的技術和f比檢驗方法,進一步確定了每一種因子有什么主要的影響,從而確定了它們的影響程度。f0.1,2,13的f比的比值是2.76,相當于10%的影響程度。(或者置信水平為90%)這個因子的自由度是2,自由度誤差是13。如果f比值大于2.76,就可以認為對表面粗糙度有顯著影響。結果,進給量和磨削深度都對表面粗糙度有顯著影響。為了觀察使用最優磨削組合參數的重復性能,進行了5種不同類別的實驗,如表6所示。獲

11、得被測試樣的表面粗糙度值ra大約是0.35微米。使用球研磨組合參數,可使表面粗糙度提高了78%。使用球面拋光的優化參數,光滑表面進一步被拋光。經過球面拋光可獲得粗糙度ra值為0.06微米的表面。被改善了的拋光表面,可以在30×光學顯微鏡觀察下進行觀察。經過拋光工藝,工件機加工前的表面粗糙度改善了近95%。從田口矩陣實驗獲得的球面研磨優化參數,適用于曲面光滑的模具,從而改善表面的粗糙度。選擇香水瓶為一個測試載體。對于被測物體的模具數控加工中心,由powermill軟件來模擬測試。經過精銑,通過使用從田口矩陣實驗獲得的球面研磨優化參數,模具表面進一步光滑。緊接著,使用打磨拋光的最佳參數,

12、來對光滑曲面進行拋光工藝,進一步改善了被測物體的表面粗糙度。模具內部的表面粗糙度用hommelwerket4000設備來測量。模具內部的表面粗糙度ra的平均值為2.15微米,光滑表面粗糙度ra的平均值為0.45微米,拋光表面粗糙度ra的平均值為0.07微米。被測物體的光滑表面的粗糙度改善了:(2.15-0.45)/2.15=79.1%,拋光表面的粗糙度改善了:(2.15-0.07)/2.15=96.7%。五、結論:在這項工作中,對注塑模具的曲面進行了自動球面研磨與球面拋光加工,并將其工藝最佳參數成功地運用到加工中心上。 設計和制造了球面研磨裝置(及其對準組件)。通過實施田口l18型矩陣進行實驗

13、,確定了球面研磨的最佳參數。對于pds5注塑模具鋼的最佳球面研磨參數是以下一系列的組合:材料的磨料為粉紅氧化鋁,進給量料500毫米/分鐘,磨削深度20微米,轉速為18000rpm。通過使用最佳球面研磨參數,試樣的表面粗糙度ra值從約1.6微米提高到0.35微米。應用最優化表面磨削參數和最佳拋光參數,來加工模具的內部光滑曲面,可使模具內部的光滑表面改善79.1%,拋光表面改善96.7%。參考文獻1 loh nh ,tam sc,miyazawa s(1991)表面被球擦光加工時產生粗糙的調查。2 phadke 小姐 (1989) 質量工程學使用健康的設計。3 ta-tung 公司塑料注射模技術手

14、冊。4 楊鐵工廠 (1996) mv-3a 垂直機制技術手冊。附件2:外文原文(復印件)automated surface finishing of plastic injection mold steelwith spherical grinding and ball burnishing processesreceived: 30 march 2004 / accepted: 5 july 2004 / published online: 30 march 2005. springer-verlag london limited 2005abstract this study invest

15、igates the possibilities of automated spherical grinding and ball burnishing surface finishing processes in a freeform surface plastic injection mold steel pds5 on a cnc machining center. the design and manufacture ofa grinding tool holder has been accomplished in this study.the optimal surface grin

16、ding parameters were determined using taguchis orthogonal array method for plastic injection molding steel pds5 on a machining center. the optimal surface grinding parameters for the plastic injection mold steel pds5 were the combination of an abrasive material of pa al2o3, a grinding speed of 18 00

17、0 rpm, a grinding depth of 20 m, and a feed of 50 mm/min. the surface roughness ra of the specimen can be improved from about 1.60 m to 0.35 m by using the optimal parameters for surface grinding. surface roughness ra can be further improved from about 0.343 m to 0.06 m by using the ball burnishing

18、process with the optimal burnishing parameters. applying the optimal surface grinding and burnishing parameterssequentially to a fine-milled freeform surface mold insert, the surface roughnessra of freeform surface region on the tested part can be improved from about 2.15 m to 0.07 m.keywords automa

19、ted surface finishing · ballburnishing process · grinding process ·surface roughness · taguchis method1 introductionplastics are important engineering materials due to their specific characteristics, such as corrosion resistance, resistance to chemicals,low density, and ease of m

20、anufacture, and have increasingly replaced metallic components in industrial applications. injection molding is one of the important forming processes for plastic products. the surface finish quality of the plastic injection mold is an essential requirement due to its direct effects on the appearanc

21、e of the plastic product. finishing processes such as grinding, polishing and lapping are commonly used to improve the surface finish. the mounted grinding tools (wheels) have been widely used in conventional mold and die finishing industries. the geometric model of mounted grinding tools for automa

22、ted surface finishing processes was introduced in 1. a finishing process model of spherical grinding tools for automated surface finishing systems was developed in 2. grinding speed, depth of cut, feed rate, and wheel properties such as abrasive material and abrasive grain size, are the dominant par

23、ameters for the spherical grinding process.the optimal spherical grinding parameters for the injection mold steel have not yet been investigatedbased in the literature.in recent years, some research has been carried out in determining the optimal parameters of the ball burnishing process.for instanc

24、e, it has been found that plastic deformation on the workpiece surface can be reduced by using a tungsten carbide ball or a roller, thus improving the surface roughness, surface hardness, and fatigue resistance 36. the burnishing process is accomplished by machining centers 3, 4 and lathes 5, 6. the

25、 main burnishing parameters having significanteffects on the surface roughness are ball or roller material, burnishing force, feed rate, burnishing speed, lubrication, and number of burnishing passes, among others 3. the optimal surface burnishing parameters for the plastic injection mold steelpds5

26、were a combination of grease lubricant, the tungsten carbide ball, a burnishing speed of 200 mm/min, a burnishing force of 300 n, and a feed of 40 m 7. the depth of penetration of the burnished surface using the optimal ball burnishing parameterswas about 2.5 microns. the improvement of the surface

27、roughness through burnishing process generally ranged between 40% and 90% 37. the aim of this study was to develop spherical grinding and ball burnishing surface finish processes of a freeform surface 62 plastic injection mold on a machining center. the flowchart ofautomated surface finish using sph

28、erical grinding and ball burnishing processes is shown in fig. 3. we began by designing and manufacturing the spherical grinding tool and its alignment device for use on a machining center. the optimal surface sphericalgrinding parameters were determined by utilizing a taguchis orthogonal array meth

29、od. four factors and three corresponding levels were then chosen for the taguchis l18 matrix experiment. the optimal mounted spherical grinding parameters for surface grinding were then applied to the surface finish of a freeformsurface carrier. to improve the surface roughness, the ground surface w

30、as further burnished, using the optimal ball burnishing parameters.2 design of the spherical grinding tool and itsalignment deviceto carry out the possible spherical grinding process of a freeform surface, the center of the ball grinder should coincide with the z-axis of the machining center. the mo

31、unted spherical grinding tool and its adjustment device was designed.the electric grinder was mounted in a tool holder with two adjustable pivot screws. the center of the grinder ball was well aligned with the help of the conic groove of the alignment components. having aligned the grinder ball, two

32、 adjustable pivotscrews were tightened; after which, the alignment components could be removed. the deviation between the center coordinates of the ball grinder and that of the shank was about 5 m, which was measured by a cnc coordinate measuring machine. the force induced by the vibration of the ma

33、chine bed is absorbed by a helical spring. the manufactured spherical grinding tool and ball-burnishing tool were mounted. the spindle was locked for both the spherical grinding process and the ball burnishing process by a spindle-locking mechanism.3 planning of the matrix experiment3.1 configuratio

34、n of taguchis orthogonal array the effects of several parameters can be determined efficiently by conducting matrix experiments using taguchis orthogonalarray 8. to match the aforementioned spherical grinding parameters,the abrasive material of the grinder ball (with the diameter of 10 mm), the feed

35、 rate, the depth of grinding, and the revolution of the electric grinder were selected as the four experimental factors (parameters) and designated as factor a to d (seetable 1) in this research. three levels (settings) for each factor were configured to cover the range of interest, and were identi-

36、 fied by the digits 1, 2, and 3. three types of abrasive materials, namely silicon carbide (sic), white aluminum oxide (al2o3,wa), and pink aluminum oxide (al2o3, pa), were selected and studied. three numerical values of each factor were determined based on the pre-study results. the l18 orthogonal

37、array was selected to conduct the matrix experiment for four 3-level factors of the spherical grinding process. 3.2 definition of the data analysis engineering design problems can be divided into smaller-thebettertypes, nominal-the-best types, larger-the-better types, signed-target types, among othe

38、rs 8. the signal-to-noise (s/n) ratio is used as the objective function for optimizing a product or process design. the surface roughness value of the ground surfacevia an adequate combination of grinding parameters should be smaller than that of the original surface. consequently, the spherical gri

39、nding process is an example of a smaller-the-better type problem. the s/n ratio, , is defined by the followingequation.after the s/n ratio from the experimental data of each l18 orthogonal array is calculated, the main effect of each factor was determined by using an analysis of variance (anova) tec

40、hnique and an f-ratio test 8. the optimization strategy of smaller-the better problem is to maximize , as defined by eq. 1.levels that maximize will be selected for the factors that have a significant effect on . the optimal conditions for spherical grinding can then be determined.4 experimental wor

41、k and resultsthe material used in this study was pds5 tool steel (equivalent to aisi p20) 9, which is commonly used for the molds of large plastic injection products in the field of automobile components and domestic appliances. the hardness of this materialis about hrc33 (hs46) 9. one specific adva

42、ntage of this material is that after machining, the mold can be directly used for further finishing processes without heat treatment due to its special pre-treatment. the specimens were designed and manufactured so that they could be mounted on a dynamometer to measure the reaction force. the pds5 s

43、pecimen was roughly machined and then mounted on the dynamometer to carry out the fine milling on a three-axis machining center made by yang-iron company (type mv-3a), equipped with a funuc company nc-controller (type 0m) 10. the pre-machined surface roughness was measured, using hommelwerke t4000 e

44、quipment,to be about 1.6 m. a mp10 touch-trigger probe made by the renishaw company was also integrated withthe machining center tool magazine to measure and determine the coordinated origin of the specimen to be ground. the nc codes needed for the ball-burnishing path were generated by powermill ca

45、m software. these codes can be transmitted to the cnc controller of the machining center via rs232 serial interface.the goal in the spherical grinding process is to minimize the surface roughness value of the ground specimen by determining the optimal level of each factor. since log is a monotone de

46、creasing function, we should maximize the s/n ratio. consequently, we can determine the optimal level for each factor as being the level that has the highest value of . on the matrix experiment, the optimal abrasive material was pink aluminum oxide; the optimal feed was 50 mm/min; the optimaldepth o

47、f grinding was 20 m; and the optimal revolution was 18 000 rpm, as shown in table 4.the main effect of each factor was further determined by using an analysis of variance (anova) technique and an f ratio test in order to determine their significance. the f0.10,2,13 is 2.76 for a level of significanc

48、e equal to 0.10 (or90% confidence level); the factors degree of freedom is 2 and the degree of freedom for the pooled error is 13. an f ratio value greater than 2.76 can be concluded as having a significant effect on surface roughness and is identified by an asterisk. as a result, the feed and the d

49、epth of grinding have a significant effect on surface roughness.five verification experiments were carried out to observe the repeatability of using the optimal combination of grinding parameters. the obtainable surface roughness value ra of such specimen was measured to be about 0.35 m.surface roug

50、hness was improved by about 78% in using the op-timal combination of spherical grinding parameters. the ground surface was further burnished using the optimal ball burnishing parameters. a surface roughness value of ra = 0.06 m was obtainable after ball burnishing. improvement of the burnished surfa

51、ceroughness observed with a 30× optical microscope . the improvement of pre-machined surfaces roughness was about 95% after the burnishing process. the optimal parameters for surface spherical grinding obtained from the taguchis matrix experiments were applied to the surface finish of the freef

52、orm surface mold insert to evaluate the surface roughness improvement. a perfume bottle was selected as the tested carrier. the cncmachining of the mold insert for the tested object was simulated with powermill cam software. after fine milling, the mold insert was further ground with the optimal sph

53、erical grinding parameters obtained fromthe taguchis matrix experiment. shortly afterwards, the ground surface was burnished with the optimal ball burnishing parameters to further improve the surface roughness of the tested object. the surface roughness of the mold insert was measuredwith hommelwerk

54、e t4000 equipment. the average surface roughness value ra on a fine-milled surface of the mold insert was 2.15 m on average; that on the ground surface was 0.45 m comparison between the pre-machined surface, ground surface and the burnished surface of the tested specimen observed with a toolmakermicroscope (30×)66 fine-milled, ground and burnished mold insert of a perfume bottle on average; and that on burnished surface was 0.07 m on average.the surface roughn

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論