江蘇省無錫市港下中學2025年初三下期中數學試題含解析_第1頁
江蘇省無錫市港下中學2025年初三下期中數學試題含解析_第2頁
江蘇省無錫市港下中學2025年初三下期中數學試題含解析_第3頁
江蘇省無錫市港下中學2025年初三下期中數學試題含解析_第4頁
江蘇省無錫市港下中學2025年初三下期中數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省無錫市港下中學2025年初三下期中數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖所示的幾何體的俯視圖是()A. B. C. D.2.如圖,OP平分∠AOB,PC⊥OA于C,點D是OB上的動點,若PC=6cm,則PD的長可以是()A.7cm B.4cm C.5cm D.3cm3.如圖,在平面直角坐標系中,正方形ABCD的頂點A的坐標為(﹣1,1),點B在x軸正半軸上,點D在第三象限的雙曲線上,過點C作CE∥x軸交雙曲線于點E,連接BE,則△BCE的面積為()A.5 B.6 C.7 D.84.如圖,已知正五邊形內接于,連結,則的度數是()A. B. C. D.5.如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉一定角度后,點B′恰好與點C重合,則平移的距離和旋轉角的度數分別為()A.4,30° B.2,60° C.1,30° D.3,60°6.如圖,在△ABC中,D、E分別是邊AB、AC的中點,若BC=6,則DE的長為()A.2 B.3 C.4 D.67.改革開放40年以來,城鄉居民生活水平持續快速提升,居民教育、文化和娛樂消費支出持續增長,已經成為居民各項消費支出中僅次于居住、食品煙酒、交通通信后的第四大消費支出,如圖為北京市統計局發布的2017年和2018年我市居民人均教育、文化和娛樂消費支出的折線圖.說明:在統計學中,同比是指本期統計數據與上一年同期統計數據相比較,例如2018年第二季度與2017年第二季度相比較;環比是指本期統計數據與上期統計數據相比較,例如2018年第二季度與2018年第一季度相比較.根據上述信息,下列結論中錯誤的是()A.2017年第二季度環比有所提高B.2017年第三季度環比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高8.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為()A.1 B.2 C.3 D.49.用配方法解下列方程時,配方有錯誤的是()A.化為 B.化為C.化為 D.化為10.對于反比例函數y=﹣2xA.圖象分布在第二、四象限B.當x>0時,y隨x的增大而增大C.圖象經過點(1,﹣2)D.若點A(x1,y1),B(x2,y2)都在圖象上,且x1<x2,則y1<y2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,甲、乙兩船同時從港口出發,甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°方向航行,半小時后甲船到達點C,乙船正好到達甲船正西方向的點B,則乙船的航程為______海里(結果保留根號).12.如圖,在矩形ABCD中,AB=3,BC=5,在CD上任取一點E,連接BE,將△BCE沿BE折疊,使點C恰好落在AD邊上的點F處,則CE的長為_____.13.從1,2,3,4,5,6,7,8這八個數中,任意抽取一個數,這個數恰好是合數的概率是__________.14.已知∠=32°,則∠的余角是_____°.15.在平面直角坐標系中,智多星做走棋的游戲,其走法是:棋子從原點出發,第1步向上走1個單位,第2步向上走2個單位,第3步向右走1個單位,第4步向上走1個單位……依此類推,第n步的走法是:當n被3除,余數為2時,則向上走2個單位;當走完第2018步時,棋子所處位置的坐標是_____16.如圖,已知在平行四邊形ABCD中,E是邊AB的中點,F在邊AD上,且AF:FD=2:1,如果=,=,那么=_____.三、解答題(共8題,共72分)17.(8分)霧霾天氣嚴重影響市民的生活質量。在今年寒假期間,某校九年級一班的綜合實踐小組學生對“霧霾天氣的主要成因”隨機調查了所在城市部分市民,并對調查結果進行了整理,繪制了下圖所示的不完整的統計圖表:組別霧霾天氣的主要成因百分比A工業污染45%B汽車尾氣排放C爐煙氣排放15%D其他(濫砍濫伐等)請根據統計圖表回答下列問題:本次被調查的市民共有多少人?并求和的值;請補全條形統計圖,并計算扇形統計圖中扇形區域所對應的圓心角的度數;若該市有100萬人口,請估計市民認為“工業污染和汽車尾氣排放是霧霾天氣主要成因”的人數.18.(8分)(閱讀)如圖1,在等腰△ABC中,AB=AC,AC邊上的高為h,M是底邊BC上的任意一點,點M到腰AB、AC的距離分別為h1,h1.連接AM.∵∴(思考)在上述問題中,h1,h1與h的數量關系為:.(探究)如圖1,當點M在BC延長線上時,h1、h1、h之間有怎樣的數量關系式?并說明理由.(應用)如圖3,在平面直角坐標系中有兩條直線l1:,l1:y=-3x+3,若l1上的一點M到l1的距離是1,請運用上述結論求出點M的坐標.19.(8分)某校檢測學生跳繩水平,抽樣調查了部分學生的“1分鐘跳繩”成績,并制成了下面的頻數分布直方圖(每小組含最小值,不含最大值)和扇形圖(1)D組的人數是人,補全頻數分布直方圖,扇形圖中m=;(2)本次調查數據中的中位數落在組;(3)如果“1分鐘跳繩”成績大于或等于120次為優秀,那么該校4500名學生中“1分鐘跳繩”成績為優秀的大約有多少人?20.(8分)某居民小區一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.(1)請你用直尺和圓規作出這個輸水管道的圓形截面的圓心(保留作圖痕跡);(2)若這個輸水管道有水部分的水面寬AB=8cm,水面最深地方的高度為2cm,求這個圓形截面的半徑.21.(8分)甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數關系;折線OBCDA表示轎車離甲地距離y(千米)與時間x(小時)之間的函數關系.請根據圖象解答下列問題:當轎車剛到乙地時,此時貨車距離乙地千米;當轎車與貨車相遇時,求此時x的值;在兩車行駛過程中,當轎車與貨車相距20千米時,求x的值.22.(10分)八年級(1)班研究性學習小組為研究全校同學課外閱讀情況,在全校隨機邀請了部分同學參與問卷調查,統計同學們一個月閱讀課外書的數量,并繪制了以下統計圖.請根據圖中信息解決下列問題:(1)共有名同學參與問卷調查;(2)補全條形統計圖和扇形統計圖;(3)全校共有學生1500人,請估計該校學生一個月閱讀2本課外書的人數約為多少.23.(12分)一天晚上,李明利用燈光下的影子長來測量一路燈D的高度.如圖,當在點A處放置標桿時,李明測得直立的標桿高AM與影子長AE正好相等,接著李明沿AC方向繼續向前走,走到點B處放置同一個標桿,測得直立標桿高BN的影子恰好是線段AB,并測得AB=1.2m,已知標桿直立時的高為1.8m,求路燈的高CD的長.24.如圖,已知AC和BD相交于點O,且AB∥DC,OA=OB.求證:OC=OD.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

找到從上面看所得到的圖形即可,注意所有看到的棱都應表現在俯視圖中.【詳解】從上往下看,該幾何體的俯視圖與選項D所示視圖一致.故選D.本題考查了簡單組合體三視圖的知識,俯視圖是從物體的上面看得到的視圖.2、A【解析】

過點P作PD⊥OB于D,根據角平分線上的點到角的兩邊距離相等可得PC=PD,再根據垂線段最短解答即可.【詳解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,則PD的最小值是6cm,故選A.考查了角平分線上的點到角的兩邊距離相等的性質,垂線段最短的性質,熟記性質是解題的關鍵.3、C【解析】

作輔助線,構建全等三角形:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,證明△AGD≌△DHC≌△CMB,根據點D的坐標表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐標,根據三角形面積公式可得結論.【詳解】解:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,設D(x,),∵四邊形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴點E的縱坐標為﹣4,當y=﹣4時,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE?BM=××4=7;故選C.考查正方形的性質、全等三角形的判定和性質、反比例函數的性質等知識,解題的關鍵是靈活運用所學知識解決問題,學會構建方程解決問題.4、C【解析】

根據多邊形內角和定理、正五邊形的性質求出∠ABC、CD=CB,根據等腰三角形的性質求出∠CBD,計算即可.【詳解】∵五邊形為正五邊形∴∵∴∴故選:C.本題考查的是正多邊形和圓、多邊形的內角和定理,掌握正多邊形和圓的關系、多邊形內角和等于(n-2)×180°是解題的關鍵.5、B【解析】試題分析:∵∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉一定角度后,點B′恰好與點C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等邊三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距離和旋轉角的度數分別為:2,60°故選B.考點:1、平移的性質;2、旋轉的性質;3、等邊三角形的判定6、B【解析】

根據三角形的中位線等于第三邊的一半進行計算即可.【詳解】∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=6,∴DE=12故選B.本題考查了三角形的中位線定理,中位線是三角形中的一條重要線段,由于它的性質與線段的中點及平行線緊密相連,因此,它在幾何圖形的計算及證明中有著廣泛的應用.7、C【解析】

根據環比和同比的比較方法,驗證每一個選項即可.【詳解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正確;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正確;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C錯誤;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D正確;故選C.本題考查折線統計圖,同比和環比的意義;能夠從統計圖中獲取數據,按要求對比數據是解題的關鍵.8、C【解析】

∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴,∴,∴S△ABC=4,∴S△BCD=S△ABC-S△ACD=4-1=1.故選C考點:相似三角形的判定與性質.9、B【解析】

配方法的一般步驟:(1)把常數項移到等號的右邊;(2)把二次項的系數化為1;(3)等式兩邊同時加上一次項系數一半的平方.【詳解】解:、,,,,故選項正確.、,,,,故選項錯誤.、,,,,,故選項正確.、,,,,.故選項正確.故選:.此題考查了配方法解一元二次方程,解題時要注意解題步驟的準確應用.選擇用配方法解一元二次方程時,最好使方程的二次項的系數為1,一次項的系數是2的倍數.10、D【解析】

根據反比例函數圖象的性質對各選項分析判斷后利用排除法求解.【詳解】A.k=?2<0,∴它的圖象在第二、四象限,故本選項正確;B.k=?2<0,當x>0時,y隨x的增大而增大,故本選項正確;C.∵-2D.若點A(x1,y1),B(x2,y2)都在圖象上,,若x1<0<x2,則y2<y1,故本選項錯誤.故選:D.考查了反比例函數的圖象與性質,掌握反比例函數的性質是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、10海里.【解析】

本題可以求出甲船行進的距離AC,根據三角函數就可以求出AB,即可求出乙船的路程.【詳解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到達甲船正西方向的B點,∴∠C=30°,∴AB=AC?tan30°=30×=10海里.答:乙船的路程為10海里.故答案為10海里.本題主要考查的是解直角三角形的應用-方向角問題及三角函數的定義,理解方向角的定義是解決本題的關鍵.12、【解析】

設CE=x,由矩形的性質得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折疊的性質得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的長度,進而求出DF的長度;然后在Rt△DEF根據勾股定理列出關于x的方程即可解決問題.【詳解】設CE=x.∵四邊形ABCD是矩形,∴AD=BC=5,CD=AB=3,∠A=∠D=90°.∵將△BCE沿BE折疊,使點C恰好落在AD邊上的點F處,∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中,由勾股定理得:AF2=52-32=16,∴AF=4,DF=5-4=1.在Rt△DEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=,故答案為.13、.【解析】

根據合數定義,用合數的個數除以數的總數即為所求的概率.【詳解】∵在1,2,3,4,5,6,7,8這八個數中,合數有4、6、8這3個,∴這個數恰好是合數的概率是.故答案為:.本題考查了概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A);找到合數的個數是解題的關鍵.14、58°【解析】

根據余角:如果兩個角的和等于90°(直角),就說這兩個角互為余角.即其中一個角是另一個角的余角可得答案.【詳解】解:∠α的余角是:90°-32°=58°.故答案為58°.本題考查余角,解題關鍵是掌握互為余角的兩個角的和為90度.15、(672,2019)【解析】分析:按照題目給定的規則,找到周期,由題意可得每三步是一個循環,所以只需要計算2018被3除,就可以得到棋子的位置.詳解:解:由題意得,每3步為一個循環組依次循環,且一個循環組內向右1個單位,向上3個單位,∵2018÷3=672…2,∴走完第2018步,為第673個循環組的第2步,所處位置的橫坐標為672,縱坐標為672×3+3=2019,∴棋子所處位置的坐標是(672,2019).故答案為:(672,2019).點睛:周期問題解決問題的核心是要找到最小正周期,然后把給定的數(一般是一個很大的數)除以最小正周期,余數是幾,就是第幾步,特別余數是1,就是第一步,余數是0,就是最后一步.16、【解析】

根據,只要求出、即可解決問題;【詳解】∵四邊形是平行四邊形,,,,,,,,.故答案為.本題考查的知識點是平面向量,平行四邊形的性質,解題關鍵是表達出、.三、解答題(共8題,共72分)17、(1)200人,;(2)見解析,;(3)75萬人.【解析】

(1)用A類的人數除以所占的百分比求出被調查的市民數,再用B類的人數除以總人數得出B類所占的百分比m,繼而求出n的值即可;(2)求出C、D兩組人數,從而可補全條形統計圖,用360度乘以n即可得扇形區域所對應的圓心角的度數;(3)用該市的總人數乘以持有A、B兩類所占的百分比的和即可.【詳解】(1)本次被調查的市民共有:(人),∴,;(2)組的人數是(人)、組的人數是(人),∴;補全的條形統計圖如下圖所示:扇形區域所對應的圓心角的度數為:;(3)(萬),∴若該市有100萬人口,市民認為“工業污染和汽車尾氣排放是霧霾天氣主要成因”的人數約為75萬人.本題考查了條形統計圖、扇形統計圖、統計表,讀懂圖形,找出必要的信息是解題的關鍵.18、【思考】h1+h1=h;【探究】h1-h1=h.理由見解析;【應用】所求點M的坐標為(,1)或(-,4).【解析】

思考:根據等腰三角形的性質,把代數式化簡可得.探究:當點M在BC延長線上時,連接,可得,化簡可得.應用:先證明,△ABC為等腰三角形,即可運用上面得到的性質,再分點M在BC邊上和在CB延長線上兩種情況討論,第一種有1+My=OB,第二種為My-1=OB,解得的縱坐標,再分別代入的解析式即可求解.【詳解】思考即h1+h1=h.探究h1-h1=h.理由.連接,∵∴∴h1-h1=h.應用在中,令x=0得y=3;令y=0得x=-4,則:A(-4,0),B(0,3)同理求得C(1,0),,又因為AC=5,所以AB=AC,即△ABC為等腰三角形.①當點M在BC邊上時,由h1+h1=h得:1+My=OB,My=3-1=1,把它代入y=-3x+3中求得:,∴;②當點M在CB延長線上時,由h1-h1=h得:My-1=OB,My=3+1=4,把它代入y=-3x+3中求得:,∴,綜上,所求點M的坐標為或.本題結合三角形的面積和等腰三角形的性質考查了新性質的推理與證明,熟練掌握三角形的性質,結合圖形層層推進是解答的關鍵.19、(1)16、84°;(2)C;(3)該校4500名學生中“1分鐘跳繩”成績為優秀的大約有3000(人)【解析】

(1)根據百分比=所長人數÷總人數,圓心角=百分比,計算即可;(2)根據中位數的定義計算即可;(3)用一半估計總體的思考問題即可;【詳解】(1)由題意總人數人,D組人數人;B組的圓心角為;(2)根據A組6人,B組14人,C組19人,D組16人,E組5人可知本次調查數據中的中位數落在C組;(3)該校4500名學生中“1分鐘跳繩”成績為優秀的大約有人.本題主要考查了數據的統計,熟練掌握扇形圖圓心角度數求解方法,總體求解方法等相關內容是解決本題的關鍵.20、(1)詳見解析;(2)這個圓形截面的半徑是5cm.【解析】

(1)根據尺規作圖的步驟和方法做出圖即可;(2)先過圓心作半徑,交于點,設半徑為,得出、的長,在中,根據勾股定理求出這個圓形截面的半徑.【詳解】(1)如圖,作線段AB的垂直平分線l,與弧AB交于點C,作線段AC的垂直平分線l′與直線l交于點O,點O即為所求作的圓心.(2)如圖,過圓心O作半徑CO⊥AB,交AB于點D,設半徑為r,則AD=AB=4,OD=r-2,在Rt△AOD中,r2=42+(r-2)2,解得r=5,答:這個圓形截面的半徑是5cm.此題考查了垂徑定理和勾股定理,關鍵是根據題意畫出圖形,再根據勾股定理進行求解.21、(1)30;(2)當x=3.9時,轎車與貨車相遇;(3)在兩車行駛過程中,當轎車與貨車相距20千米時,x的值為3.5或4.3小時.【解析】

(1)根據圖象可知貨車5小時行駛300千米,由此求出貨車的速度為60千米/時,再根據圖象得出貨車出發后4.5小時轎車到達乙地,由此求出轎車到達乙地時,貨車行駛的路程為270千米,而甲、乙兩地相距300千米,則此時貨車距乙地的路程為:300﹣270=30千米;(2)先求出線段CD對應的函數關系式,再根據兩直線的交點即可解答;(3)分兩種情形列出方程即可解決問題.【詳解】解:(1)根據圖象信息:貨車的速度V貨=,∵轎車到達乙地的時間為貨車出發后4.5小時,∴轎車到達乙地時,貨車行駛的路程為:4.5×60=270(千米),此時,貨車距乙地的路程為:300﹣270=30(千米).所以轎車到達乙地后,貨車距乙地30千米.故答案為30;(2)設CD段函數解析式為y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其圖象上,,解得,∴CD段函數解析式:y=110x﹣195(2.5≤x≤4.5);易得OA:y=60x,,解得,∴當x=3.9時,轎車與貨車相遇;(3)當x=2.5時,y貨=150,兩車

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論