




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市寶山區行知中學2025年高三下學期高考模擬考試數學試題(理工類)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量滿足,且與的夾角為,則()A. B. C. D.2.已知函數是定義在上的奇函數,函數滿足,且時,,則()A.2 B. C.1 D.3.用數學歸納法證明1+2+3+?+n2=n4A.k2+1C.k2+14.已知非零向量滿足,若夾角的余弦值為,且,則實數的值為()A. B. C.或 D.5.在復平面內,復數對應的點的坐標為()A. B. C. D.6.已知函數,不等式對恒成立,則的取值范圍為()A. B. C. D.7.已知斜率為的直線與雙曲線交于兩點,若為線段中點且(為坐標原點),則雙曲線的離心率為()A. B.3 C. D.8.已知復數z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知函,,則的最小值為()A. B.1 C.0 D.10.已知函數是奇函數,且,若對,恒成立,則的取值范圍是()A. B. C. D.11.雙曲線C:(,)的離心率是3,焦點到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.12.已知函數是奇函數,則的值為()A.-10 B.-9 C.-7 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知,若,則________.14.如圖,網格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為________.15.已知向量,,若,則實數______.16.已知函數,則函數的極大值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數().(1)討論的單調性;(2)若對,恒成立,求的取值范圍.18.(12分)如圖,在平面四邊形中,,,.(1)求;(2)求四邊形面積的最大值.19.(12分)設數列的前列項和為,已知.(1)求數列的通項公式;(2)求證:.20.(12分)設函數.(1)當時,解不等式;(2)設,且當時,不等式有解,求實數的取值范圍.21.(12分)某學生為了測試煤氣灶燒水如何節省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數x與燒開一壺水所用時間y的一組數據,且作了一定的數據處理(如表),得到了散點圖(如圖).表中,.(1)根據散點圖判斷,與哪一個更適宜作燒水時間y關于開關旋鈕旋轉的弧度數x的回歸方程類型?(不必說明理由)(2)根據判斷結果和表中數據,建立y關于x的回歸方程;(3)若旋轉的弧度數x與單位時間內煤氣輸出量t成正比,那么x為多少時,燒開一壺水最省煤氣?附:對于一組數據,,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.22.(10分)已知,均為給定的大于1的自然數,設集合,.(Ⅰ)當,時,用列舉法表示集合;(Ⅱ)當時,,且集合滿足下列條件:①對任意,;②.證明:(?。┤?,則(集合為集合在集合中的補集);(ⅱ)為一個定值(不必求出此定值);(Ⅲ)設,,,其中,,若,則.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
根據向量的運算法則展開后利用數量積的性質即可.【詳解】.故選:A.本題主要考查數量積的運算,屬于基礎題.2.D【解析】
說明函數是周期函數,由周期性把自變量的值變小,再結合奇偶性計算函數值.【詳解】由知函數的周期為4,又是奇函數,,又,∴,∴.故選:D.本題考查函數的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎.3.C【解析】
首先分析題目求用數學歸納法證明1+1+3+…+n1=n4【詳解】當n=k時,等式左端=1+1+…+k1,當n=k+1時,等式左端=1+1+…+k1+k1+1+k1+1+…+(k+1)1,增加了項(k1+1)+(k1+1)+(k1+3)+…+(k+1)1.故選:C.本題主要考查數學歸納法,屬于中檔題./4.D【解析】
根據向量垂直則數量積為零,結合以及夾角的余弦值,即可求得參數值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.本題考查向量數量積的應用,涉及由向量垂直求參數值,屬基礎題.5.C【解析】
利用復數的運算法則、幾何意義即可得出.【詳解】解:復數i(2+i)=2i﹣1對應的點的坐標為(﹣1,2),故選:C本題考查了復數的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題.6.C【解析】
確定函數為奇函數,且單調遞減,不等式轉化為,利用雙勾函數單調性求最值得到答案.【詳解】是奇函數,,易知均為減函數,故且在上單調遞減,不等式,即,結合函數的單調性可得,即,設,,故單調遞減,故,當,即時取最大值,所以.故選:.本題考查了根據函數單調性和奇偶性解不等式,參數分離求最值是解題的關鍵.7.B【解析】
設,代入雙曲線方程相減可得到直線的斜率與中點坐標之間的關系,從而得到的等式,求出離心率.【詳解】,設,則,兩式相減得,∴,.故選:B.本題考查求雙曲線的離心率,解題方法是點差法,即出現雙曲線的弦中點坐標時,可設弦兩端點坐標代入雙曲線方程相減后得出弦所在直線斜率與中點坐標之間的關系.8.C【解析】分析:根據復數的運算,求得復數z,再利用復數的表示,即可得到復數對應的點,得到答案.詳解:由題意,復數z=2i1-i所以復數z在復平面內對應的點的坐標為(-1,-1),位于復平面內的第三象限,故選C.點睛:本題主要考查了復數的四則運算及復數的表示,其中根據復數的四則運算求解復數z是解答的關鍵,著重考查了推理與運算能力.9.B【解析】
,利用整體換元法求最小值.【詳解】由已知,又,,故當,即時,.故選:B.本題考查整體換元法求正弦型函數的最值,涉及到二倍角公式的應用,是一道中檔題.10.A【解析】
先根據函數奇偶性求得,利用導數判斷函數單調性,利用函數單調性求解不等式即可.【詳解】因為函數是奇函數,所以函數是偶函數.,即,又,所以,.函數的定義域為,所以,則函數在上為單調遞增函數.又在上,,所以為偶函數,且在上單調遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.本題考查利用函數單調性求解不等式,根據方程組法求函數解析式,利用導數判斷函數單調性,屬壓軸題.11.A【解析】
根據焦點到漸近線的距離,可得,然后根據,可得結果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點,一條漸近線則點到的距離為,由所以,則又所以所以焦距為:故選:A本題考查雙曲線漸近線方程,以及之間的關系,識記常用的結論:焦點到漸近線的距離為,屬基礎題.12.B【解析】
根據分段函數表達式,先求得的值,然后結合的奇偶性,求得的值.【詳解】因為函數是奇函數,所以,.故選:B本題主要考查分段函數的解析式、分段函數求函數值,考查數形結合思想.意在考查學生的運算能力,分析問題、解決問題的能力.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
由題意先求得的值,可得,再令,可得結論.【詳解】已知,,,,令,可得,故答案為:1.本題主要考查二項式定理的應用,注意根據題意,分析所給代數式的特點,通過給二項式的賦值,求展開式的系數和,可以簡便的求出答案,屬于基礎題.14.【解析】
根據三視圖知該幾何體是三棱柱與半圓錐的組合體,結合圖中數據求出它的體積.【詳解】根據三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結合圖中數據,計算它的體積為.故答案為:.本題考查了根據三視圖求簡單組合體的體積應用問題,是基礎題.15.-2【解析】
根據向量坐標運算可求得,根據平行關系可構造方程求得結果.【詳解】由題意得:,解得:本題正確結果:本題考查向量的坐標運算,關鍵是能夠利用平行關系構造出方程.16.【解析】
對函數求導,通過賦值,求得,再對函數單調性進行分析,求得極大值.【詳解】,故解得,,令,解得函數在單調遞增,在單調遞減,故的極大值為故答案為:.本題考查函數極值的求解,難點是要通過賦值,求出未知量.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)①當時,在上單調遞減,在上單調遞增;②當時,在上單調遞增;(2).【解析】
(1)求出函數的定義域和導函數,,對討論,得導函數的正負,得原函數的單調性;(2)法一:由得,分別運用導函數得出函數(),的單調性,和其函數的最值,可得,可得的范圍;法二:由得,化為令(),研究函數的單調性,可得的取值范圍.【詳解】(1)的定義域為,,①當時,由得,得,在上單調遞減,在上單調遞增;②當時,恒成立,在上單調遞增;(2)法一:由得,令(),則,在上單調遞減,,,即,令,則,在上單調遞增,,在上單調遞減,所以,即,(*)當時,,(*)式恒成立,即恒成立,滿足題意法二:由得,,令(),則,在上單調遞減,,,即,當時,由(Ⅰ)知在上單調遞增,恒成立,滿足題意當時,令,則,所以在上單調遞減,又,當時,,,使得,當時,,即,又,,,不滿足題意,綜上所述,的取值范圍是本題考查對于含參數的函數的單調性的討論,不等式恒成立時,求解參數的范圍,屬于難度題.18.(1);(2)【解析】
(1)根據同角三角函數式可求得,結合正弦和角公式求得,即可求得,進而由三角函數(2)設根據余弦定理及基本不等式,可求得的最大值,結合三角形面積公式可求得的最大值,即可求得四邊形面積的最大值.【詳解】(1),則由同角三角函數關系式可得,則,則,所以.(2)設在中由余弦定理可得,代入可得,由基本不等式可知,即,當且僅當時取等號,由三角形面積公式可得,所以四邊形面積的最大值為.本題考查了正弦和角公式化簡三角函數式的應用,余弦定理及不等式式求最值的綜合應用,屬于中檔題.19.(1)(2)證明見解析【解析】
(1)由已知可得,構造等比數列即可求出通項公式;(2)當時,由,可求,時,由,可證,驗證時,不等式也成立,即可得證.【詳解】(1)由可得,,即,所以,解得,(2)當時,,,當時,,綜上,由可得遞增,,時;所以,綜上:故.本題主要考查了遞推數列求通項公式,利用放縮法證明不等式,涉及等比數列的求和公式,屬于難題.20.(1);(2).【解析】
(1)通過分類討論去掉絕對值符號,進而解不等式組求得結果;(2)將不等式整理為,根據能成立思想可知,由此構造不等式求得結果.【詳解】(1)當時,可化為,由,解得;由,解得;由,解得.綜上所述:所以原不等式的解集為.(2),,,,有解,,即,又,,實數的取值范圍是.本題考查絕對值不等式的求解、根據不等式有解求解參數范圍的問題;關鍵是明確對于不等式能成立的問題,通過分離變量的方式將問題轉化為所求參數與函數最值之間的比較問題.21.(1)更適宜(2)(3)x為2時,燒開一壺水最省煤氣【解析】
(1)根據散點圖是否按直線型分布作答;(2)根據回歸系數公式得出y關于的線性回歸方程,再得出y關于x的回歸方程;(3)利用基本不等式得出煤氣用量的最小值及其成立的條件.【詳解】(1)更適宜作燒水時間y關于開關旋鈕旋轉的弧度數x的回歸方程類型.(2)由公式可得:,,所以所求回歸方程為.(3)設,則煤氣用量,當且僅當時取“”,即時,煤氣用量最小.故x為2時,燒開一壺水最省煤氣.本題考查擬合模型的選擇,回歸方程的求解,涉及均值不等式的使用,屬綜合中檔題.22.(Ⅰ);(Ⅱ)(?。┰斠娊馕觯áⅲ┰斠娊馕?(Ⅲ)詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025冬奧會觀看心得及啟示(4篇)
- 小學生護林防火主題演講稿(5篇)
- 格式辭職報告(5篇)
- 2025裝飾公司年終工作總結(5篇)
- 預防近視的活動學習心得(5篇)
- 人教版 (PEP)三年級下冊Unit 3 At the zoo Part A第3課時教案設計
- 上海市新版公有住房差價交換協議(17篇)
- 設備維修合同(15篇)
- 提高實驗教學有效性
- 我的童年三分鐘演講稿(4篇)
- 2025年華僑港澳臺學生聯招考試英語試卷試題(含答案詳解)
- 《恙蟲病正式》課件
- 2025中國海油春季校園招聘筆試高頻重點提升(共500題)附帶答案詳解
- 微通道內納米流體傳熱流動特性
- 衛生院鄉村醫保培訓課件
- 微陣列技術在腫瘤標志物研究-洞察分析
- 2024至2030年中國氣力輸送系統行業投資前景及策略咨詢研究報告
- 初中數學52個經典母題
- 幼兒園課件之大班科學《有趣的廣告》
- 《智能建造技術與裝備》 課件 第十章 智能施工與智慧工地
- 建筑工程三級安全教育內容(同名15503)
評論
0/150
提交評論