




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省江陰市華士片、澄東片重點達標名校2025屆普通高中畢業班單科質量檢查數學試題試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在矩形ABCD中,對角線AC,BD相交于點O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.32.如圖所示的幾何體的俯視圖是()A. B. C. D.3.如圖,在底邊BC為2,腰AB為2的等腰三角形ABC中,DE垂直平分AB于點D,交BC于點E,則△ACE的周長為()A.2+ B.2+2 C.4 D.34.如圖,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB與△OCD的面積分別是S1和S2,△OAB與△OCD的周長分別是C1和C2,則下列等式一定成立的是()A. B. C. D.5.在平面直角坐標系中,將點P(﹣4,2)繞原點O順時針旋轉90°,則其對應點Q的坐標為()A.(2,4) B.(2,﹣4) C.(﹣2,4) D.(﹣2,﹣4)6.下列計算正確的是(
).A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6C.x6÷x3=x2 D.=27.對于任意實數k,關于x的方程的根的情況為A.有兩個相等的實數根 B.沒有實數根C.有兩個不相等的實數根 D.無法確定8.在△ABC中,點D、E分別在邊AB、AC上,如果AD=1,BD=3,那么由下列條件能夠判斷DE∥BC的是()A. B. C. D.9.已知二次函數y=ax2+bx+c的圖象如圖所示,有以下結論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結論的序號是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤10.下列運算正確的是()A.5ab﹣ab=4 B.a6÷a2=a4C. D.(a2b)3=a5b3二、填空題(共7小題,每小題3分,滿分21分)11.已知一個圓錐體的底面半徑為2,母線長為4,則它的側面展開圖面積是___.(結果保留π)12.如圖,正方形ABCD內有兩點E、F滿足AE=1,EF=FC=3,AE⊥EF,CF⊥EF,則正方形ABCD的邊長為_____.13.如圖,在△ABC中,∠C=∠ABC,BE⊥AC,垂足為點E,△BDE是等邊三角形,若AD=4,則線段BE的長為______.14.如圖:圖象①②③均是以P0為圓心,1個單位長度為半徑的扇形,將圖形①②③分別沿東北,正南,西北方向同時平移,每次移動一個單位長度,第一次移動后圖形①②③的圓心依次為P1P2P3,第二次移動后圖形①②③的圓心依次為P4P5P6…,依此規律,P0P2018=_____個單位長度.15.已知拋物線y=ax2+bx+c=0(a≠0)與軸交于,兩點,若點的坐標為,線段的長為8,則拋物線的對稱軸為直線________________.16.因式分解:________.17.2018年5月13日,中國首艘國產航空母艦首次執行海上試航任務,其排水量超過6萬噸,將數60000用科學記數法表示應為_______________.三、解答題(共7小題,滿分69分)18.(10分)某校初三體育考試選擇項目中,選擇籃球項目和排球項目的學生比較多.為了解學生掌握籃球技巧和排球技巧的水平情況,進行了抽樣調查,過程如下,請補充完整.收集數據:從選擇籃球和排球的學生中各隨機抽取16人,進行了體育測試,測試成績(十分制)如下:排球109.59.510899.5971045.5109.59.510籃球9.598.58.5109.510869.5109.598.59.56整理、描述數據:按如下分數段整理、描述這兩組樣本數據:(說明:成績8.5分及以上為優秀,6分及以上為合格,6分以下為不合格)分析數據:兩組樣本數據的平均數、中位數、眾數如下表所示:項目平均數中位數眾數排球8.759.510籃球8.819.259.5得出結論:(1)如果全校有160人選擇籃球項目,達到優秀的人數約為_________人;(2)初二年級的小明和小軍看到上面數據后,小明說:排球項目整體水平較高.小軍說:籃球項目整體水平較高.你同意_______的看法,理由為____________________________.(至少從兩個不同的角度說明推斷的合理性)19.(5分)“分組合作學習”已成為推動課堂教學改革,打造自主高效課堂的重要措施.某中學從全校學生中隨機抽取部分學生對“分組合作學習”實施后的學習興趣情況進行調查分析,統計圖如下:請結合圖中信息解答下列問題:求出隨機抽取調查的學生人數;補全分組后學生學習興趣的條形統計圖;分組后學生學習興趣為“中”的所占的百分比和對應扇形的圓心角.20.(8分)如圖,△ABC內接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF.判斷AF與⊙O的位置關系并說明理由;若⊙O的半徑為4,AF=3,求AC的長.21.(10分)如圖,大樓AB的高為16m,遠處有一塔CD,小李在樓底A處測得塔頂D處的仰角為60°,在樓頂B處測得塔頂D處的仰角為45°,其中A、C兩點分別位于B、D兩點正下方,且A、C兩點在同一水平線上,求塔CD的高.(=1.73,結果保留一位小數.)22.(10分)在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與點B、C重合),以AD為直角邊在AD右側作等腰三角形ADE,使∠DAE=90°,連接CE.探究:如圖①,當點D在線段BC上時,證明BC=CE+CD.應用:在探究的條件下,若AB=,CD=1,則△DCE的周長為.拓展:(1)如圖②,當點D在線段CB的延長線上時,BC、CD、CE之間的數量關系為.(2)如圖③,當點D在線段BC的延長線上時,BC、CD、CE之間的數量關系為.23.(12分)M中學為創建園林學校,購買了若干桂花樹苗,計劃把迎賓大道的一側全部栽上桂花樹(兩端必須各栽一棵),并且每兩棵樹的間隔相等,如果每隔5米栽1棵,則樹苗缺11棵;如果每隔6米栽1棵,則樹苗正好用完,求購買了桂花樹苗多少棵?24.(14分)《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從2018年9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調查,并繪制成如圖①,②的統計圖,已知“查資料”的人數是40人.請你根據以上信息解答下列問題:在扇形統計圖中,“玩游戲”對應的百分比為,圓心角度數是度;補全條形統計圖;該校共有學生2100人,估計每周使用手機時間在2小時以上(不含2小時)的人數.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數,由△OAB是等邊三角形,求出∠ADE的度數,又由AE=3,即可求得AB的長.【詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.此題考查了矩形的性質、等邊三角形的判定與性質以及含30°角的直角三角形的性質,結合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關鍵.2、D【解析】試題分析:根據俯視圖的作法即可得出結論.從上往下看該幾何體的俯視圖是D.故選D.考點:簡單幾何體的三視圖.3、B【解析】分析:根據線段垂直平分線的性質,把三角形的周長問題轉化為線段和的問題解決即可.詳解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周長=AC+AE+CE=AC+BC=2+2,故選B.點睛:本題考查了等腰三角形性質和線段垂直平分線性質的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.4、D【解析】A選項,在△OAB∽△OCD中,OB和CD不是對應邊,因此它們的比值不一定等于相似比,所以A選項不一定成立;B選項,在△OAB∽△OCD中,∠A和∠C是對應角,因此,所以B選項不成立;C選項,因為相似三角形的面積比等于相似比的平方,所以C選項不成立;D選項,因為相似三角形的周長比等于相似比,所以D選項一定成立.故選D.5、A【解析】
首先求出∠MPO=∠QON,利用AAS證明△PMO≌△ONQ,即可得到PM=ON,OM=QN,進而求出Q點坐標.【詳解】作圖如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P點坐標為(﹣4,2),∴Q點坐標為(2,4),故選A.此題主要考查了旋轉的性質,以及全等三角形的判定和性質,關鍵是掌握旋轉后對應線段相等.6、D【解析】分析:根據完全平方公式、積的乘方法則、同底數冪的除法法則和算術平方根的定義計算,判斷即可.詳解:(x+y)2=x2+2xy+y2,A錯誤;(-xy2)3=-x3y6,B錯誤;x6÷x3=x3,C錯誤;==2,D正確;故選D.點睛:本題考查的是完全平方公式、積的乘方、同底數冪的除法以及算術平方根的計算,掌握完全平方公式、積的乘方法則、同底數冪的除法法則和算術平方根的定義是解題的關鍵.7、C【解析】判斷一元二次方程的根的情況,只要看根的判別式的值的符號即可:∵a=1,b=,c=,∴.∴此方程有兩個不相等的實數根.故選C.8、D【解析】
如圖,∵AD=1,BD=3,∴,當時,,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根據選項A、B、C的條件都不能推出DE∥BC,故選D.9、C【解析】
根據二次函數的性質逐項分析可得解.【詳解】解:由函數圖象可得各系數的關系:a<0,b<0,c>0,則①當x=1時,y=a+b+c<0,正確;②當x=-1時,y=a-b+c>1,正確;③abc>0,正確;④對稱軸x=-1,則x=-2和x=0時取值相同,則4a-2b+c=1>0,錯誤;⑤對稱軸x=-=-1,b=2a,又x=-1時,y=a-b+c>1,代入b=2a,則c-a>1,正確.故所有正確結論的序號是①②③⑤.故選C10、B【解析】
由整數指數冪和分式的運算的法則計算可得答案.【詳解】A項,根據單項式的減法法則可得:5ab-ab=4ab,故A項錯誤;B項,根據“同底數冪相除,底數不變,指數相減”可得:a6÷a2=a4,故B項正確;C項,根據分式的加法法則可得:,故C項錯誤;D項,根據“積的乘方等于乘方的積”可得:,故D項錯誤;故本題正確答案為B.冪的運算法則:(1)同底數冪的乘法:(m、n都是正整數)(2)冪的乘方:(m、n都是正整數)(3)積的乘方:(n是正整數)(4)同底數冪的除法:(a≠0,m、n都是正整數,且m>n)(5)零次冪:(a≠0)(6)負整數次冪:(a≠0,p是正整數).二、填空題(共7小題,每小題3分,滿分21分)11、8π【解析】
根據圓錐的側面積=底面周長×母線長÷2公式即可求出.【詳解】∵圓錐體的底面半徑為2,∴底面周長為2πr=4π,∴圓錐的側面積=4π×4÷2=8π.故答案為:8π.靈活運用圓的周長公式和扇形面積公式.12、【解析】分析:連接AC,交EF于點M,可證明△AEM∽△CMF,根據條件可求得AE、EM、FM、CF,再結合勾股定理可求得AB.詳解:連接AC,交EF于點M,∵AE丄EF,EF丄FC,∴∠E=∠F=90°,∵∠AME=∠CMF,∴△AEM∽△CFM,∴,∵AE=1,EF=FC=3,∴,∴EM=,FM=,在Rt△AEM中,AM2=AE2+EM2=1+=,解得AM=,在Rt△FCM中,CM2=CF2+FM2=9+=,解得CM=,∴AC=AM+CM=5,在Rt△ABC中,AB=BC,AB2+BC2=AC2=25,∴AB=,即正方形的邊長為.故答案為:.點睛:本題主要考查相似三角形的判定和性質及正方形的性質,構造三角形相似利用相似三角形的對應邊成比例求得AC的長是解題的關鍵,注意勾股定理的應用.13、1【解析】
本題首先由等邊三角形的性質及垂直定義得到∠DBE=60°,∠BEC=90°,再根據等腰三角形的性質可以得出∠EBC=∠ABC-60°=∠C-60°,最后根據三角形內角和定理得出關系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到結論.【詳解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,則∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案為:1.本題主要考查等腰三角形的性質及等邊三角形的性質及垂直定義,解題的關鍵是根據三角形內角和定理列出符合題意的簡易方程,從而求出結果.14、1【解析】
根據P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移動一次,圓心離中心的距離增加1個單位,依據2018=3×672+2,即可得到點P2018在正南方向上,P0P2018=672+1=1.【詳解】由圖可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴點P2018在正南方向上,∴P0P2018=672+1=1,故答案為1.本題主要考查了坐標與圖形變化,應找出圖形哪些部分發生了變化,是按照什么規律變化的,通過分析找到各部分的變化規律后直接利用規律求解.探尋規律要認真觀察、仔細思考,善用聯想來解決這類問題.15、或x=-1【解析】
由點A的坐標及AB的長度可得出點B的坐標,由拋物線的對稱性可求出拋物線的對稱軸.【詳解】∵點A的坐標為(-2,0),線段AB的長為8,∴點B的坐標為(1,0)或(-10,0).∵拋物線y=ax2+bx+c(a≠0)與x軸交于A、B兩點,∴拋物線的對稱軸為直線x==2或x==-1.故答案為x=2或x=-1.本題考查了拋物線與x軸的交點以及二次函數的性質,由拋物線與x軸的交點坐標找出拋物線的對稱軸是解題的關鍵.16、a(a+1)(a-1)【解析】
先提公因式,再利用公式法進行因式分解即可.【詳解】解:a(a+1)(a-1)故答案為:a(a+1)(a-1)本題考查了因式分解,先提公因式再利用平方差公式是解題的關鍵.17、【解析】【分析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】60000小數點向左移動4位得到6,所以60000用科學記數法表示為:6×1,故答案為:6×1.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.三、解答題(共7小題,滿分69分)18、130小明平均數接近,而排球成績的中位數和眾數都較高.【解析】
根據抽取的16人中成績達到優秀的百分比,即可得到全校達到優秀的人數;根據平均數接近,而排球成績的中位數和眾數都較高,即可得到結論.【詳解】解:補全表格成績:人數項目10排球11275籃球021103達到優秀的人數約為(人);故答案為130;同意小明的看法,理由為:平均數接近,而排球成績的中位數和眾數都較高答案不唯一,理由需支持判斷結論故答案為小明,平均數接近,而排球成績的中位數和眾數都較高.本題考查眾數、中位數,平均數的應用,解題的關鍵是掌握眾數、中位數、平均數的定義以及用樣本估計總體.19、(1)200人;(2)補圖見解析;(3)分組后學生學習興趣為“中”的所占的百分比為30%;對應扇形的圓心角為108°.【解析】試題分析:(1)用“極高”的人數所占的百分比,即可解答;
(2)求出“高”的人數,即可補全統計圖;
(3)用“中”的人數調查的學生人數,即可得到所占的百分比,所占的百分比即可求出對應的扇形圓心角的度數.試題解析:(人).學生學習興趣為“高”的人數為:(人).補全統計圖如下:分組后學生學習興趣為“中”的所占的百分比為:學生學習興趣為“中”對應扇形的圓心角為:20、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應角相等∠OAF=∠OCF,再根據切線的性質得出∠OCF=90°,證出∠OAF=90°,即可得出結論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面積=AF?OA=OF?AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考點:1.切線的判定與性質;2.勾股定理;3.相似三角形的判定與性質.21、塔CD的高度為37.9米【解析】試題分析:首先分析圖形,根據題意構造直角三角形.本題涉及兩個直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分別計算,可得到一個關于AC的方程,從而求出DC.試題解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.則有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度為(8+24)米≈37.9米,答:塔CD的高度為37.9米.22、探究:證明見解析;應用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】試題分析:探究:判斷出∠BAD=∠CAE,再用SAS即可得出結論;
應用:先算出BC,進而算出BD,再用勾股定理求出DE,即可得出結論;
拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結論;
(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結論.試題解析:探究:∵∠BAC=90°,∠DAE=90°,
∴∠BAC=∠DAE.
∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中班心理健康安全教育教案
- 小學數學浙教版四年級上冊30、綜合與實踐教學設計
- 2025年臨沂職業學院單招職業適應性測試題庫及一套答案
- 2024年一級建造師真題答案解析
- 人音版六年級音樂上冊(簡譜)第4課《聆聽 京劇唱腔聯奏》教學設計
- 2025年西安職業技術學院單招職業傾向性測試題庫新
- 2025年遼寧省撫順市單招職業傾向性測試題庫
- 優化英語學習之道
- 腎病綜合征營養健康教育
- 醫保健康產業攻略
- 磷酸鐵鋰生產配方及工藝
- 高處作業吊籃進場驗收表
- 電工電子技術及應用全套課件
- 護理管理學練習題題庫
- DB33T 1233-2021 基坑工程地下連續墻技術規程
- 8.生發項目ppt課件(66頁PPT)
- 手榴彈使用教案
- 《新農技推廣法解讀》ppt課件
- 車載式輪椅升降裝置的結構設計-畢業設計說明書
- 社區家庭病床護理記錄文本匯總
- 劍橋BEC中級真題第四輯TEST1
評論
0/150
提交評論